Данный сайт позволяет не только решать уравнения, но ещё, к примеру, разложить на множители многочлен (трёхчлены, двухчлены).
Рассмотрим пример разложение на простые множители трёхчлена
2*x^3 - 7*x^2 + 7*x - 2
Для этого вводим наш трехчлен в форму на странице таким образом:
В итоге мы ввели следующий трехчлен:
Среди прочих упрощений - вы найдёте разложение трёхчлена на простые множители:
Но также как бонус - разложение на общие множители:
Разложение на множители с комплексной единицей
Также калькулятор умеет производить разложение на множители с учётом комлексных чисел:
пример: x^2 + 4:
результат разложения:
$$\left(x - 2 i\right) \left(x + 2 i\right)$$
Разложение на множители многочлена с двумя переменными
Пример: x^2/4 - 2*x*y + y^2
Быстрый результат:
$$\left(x - 2 y \left(2 - \sqrt{3}\right)\right) \left(x - 2 y \left(\sqrt{3} + 2\right)\right)$$
Подробное решение:
Выделим полный квадрат из квадратного трёхчлена
$$y^{2} + \left(\frac{x^{2}}{4} - 2 x y\right)$$
Запишем такое тождество
$$y^{2} + \left(\frac{x^{2}}{4} - 2 x y\right) = - 3 y^{2} + \left(\frac{x^{2}}{4} - 2 x y + 4 y^{2}\right)$$
или
$$y^{2} + \left(\frac{x^{2}}{4} - 2 x y\right) = - 3 y^{2} + \left(\frac{x}{2} - 2 y\right)^{2}$$
в виде произведения
$$\left(- \sqrt{3} y + \left(\frac{x}{2} - 2 y\right)\right) \left(\sqrt{3} y + \left(\frac{x}{2} - 2 y\right)\right)$$
$$\left(- \sqrt{3} y + \left(\frac{x}{2} - 2 y\right)\right) \left(\sqrt{3} y + \left(\frac{x}{2} - 2 y\right)\right)$$
$$\left(\frac{x}{2} + y \left(-2 - \sqrt{3}\right)\right) \left(\frac{x}{2} + y \left(-2 + \sqrt{3}\right)\right)$$
$$\left(\frac{x}{2} + y \left(-2 - \sqrt{3}\right)\right) \left(\frac{x}{2} + y \left(-2 + \sqrt{3}\right)\right)$$
Удачи вам в нелёгком труде!