11x-6+10x²=0 (уравнение) Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: 11x-6+10x²=0
Решение
Подробное решение
Это уравнение видаa*x^2 + b*x + c = 0 Квадратное уравнение можно решить с помощью дискриминанта. Корни квадратного уравнения:x 1 = D − b 2 a x_{1} = \frac{\sqrt{D} - b}{2 a} x 1 = 2 a D − b x 2 = − D − b 2 a x_{2} = \frac{- \sqrt{D} - b}{2 a} x 2 = 2 a − D − b где D = b^2 - 4*a*c - это дискриминант. Т.к.a = 10 a = 10 a = 10 b = 11 b = 11 b = 11 c = − 6 c = -6 c = − 6 , тоD = b^2 - 4 * a * c = (11)^2 - 4 * (10) * (-6) = 361 Т.к. D > 0, то уравнение имеет два корня.x1 = (-b + sqrt(D)) / (2*a) x2 = (-b - sqrt(D)) / (2*a) илиx 1 = 2 5 x_{1} = \frac{2}{5} x 1 = 5 2 Упростить x 2 = − 3 2 x_{2} = - \frac{3}{2} x 2 = − 2 3 Упростить x 1 = − 3 2 x_{1} = - \frac{3}{2} x 1 = − 2 3 x 2 = 2 5 x_{2} = \frac{2}{5} x 2 = 5 2
Сумма и произведение корней
[src] ( − 3 2 + 0 ) + 2 5 \left(- \frac{3}{2} + 0\right) + \frac{2}{5} ( − 2 3 + 0 ) + 5 2 − 11 10 - \frac{11}{10} − 10 11 1 ( − 3 2 ) 2 5 1 \left(- \frac{3}{2}\right) \frac{2}{5} 1 ( − 2 3 ) 5 2
Теорема Виета
перепишем уравнение10 x 2 + 11 x − 6 = 0 10 x^{2} + 11 x - 6 = 0 10 x 2 + 11 x − 6 = 0 изa x 2 + b x + c = 0 a x^{2} + b x + c = 0 a x 2 + b x + c = 0 как приведённое квадратное уравнениеx 2 + b x a + c a = 0 x^{2} + \frac{b x}{a} + \frac{c}{a} = 0 x 2 + a b x + a c = 0 x 2 + 11 x 10 − 3 5 = 0 x^{2} + \frac{11 x}{10} - \frac{3}{5} = 0 x 2 + 10 11 x − 5 3 = 0 p x + q + x 2 = 0 p x + q + x^{2} = 0 p x + q + x 2 = 0 гдеp = b a p = \frac{b}{a} p = a b p = 11 10 p = \frac{11}{10} p = 10 11 q = c a q = \frac{c}{a} q = a c q = − 3 5 q = - \frac{3}{5} q = − 5 3 Формулы Виетаx 1 + x 2 = − p x_{1} + x_{2} = - p x 1 + x 2 = − p x 1 x 2 = q x_{1} x_{2} = q x 1 x 2 = q x 1 + x 2 = − 11 10 x_{1} + x_{2} = - \frac{11}{10} x 1 + x 2 = − 10 11 x 1 x 2 = − 3 5 x_{1} x_{2} = - \frac{3}{5} x 1 x 2 = − 5 3