15х^2+11х+2=0 (уравнение) Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: 15х^2+11х+2=0
Решение
Подробное решение
Это уравнение видаa*x^2 + b*x + c = 0 Квадратное уравнение можно решить с помощью дискриминанта. Корни квадратного уравнения:x 1 = D − b 2 a x_{1} = \frac{\sqrt{D} - b}{2 a} x 1 = 2 a D − b x 2 = − D − b 2 a x_{2} = \frac{- \sqrt{D} - b}{2 a} x 2 = 2 a − D − b где D = b^2 - 4*a*c - это дискриминант. Т.к.a = 15 a = 15 a = 15 b = 11 b = 11 b = 11 c = 2 c = 2 c = 2 , тоD = b^2 - 4 * a * c = (11)^2 - 4 * (15) * (2) = 1 Т.к. D > 0, то уравнение имеет два корня.x1 = (-b + sqrt(D)) / (2*a) x2 = (-b - sqrt(D)) / (2*a) илиx 1 = − 1 3 x_{1} = - \frac{1}{3} x 1 = − 3 1 Упростить x 2 = − 2 5 x_{2} = - \frac{2}{5} x 2 = − 5 2 Упростить
График
-15.0 -12.5 -10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0 12.5 -2000 2000
x 1 = − 2 5 x_{1} = - \frac{2}{5} x 1 = − 5 2 x 2 = − 1 3 x_{2} = - \frac{1}{3} x 2 = − 3 1
Сумма и произведение корней
[src] ( − 2 5 + 0 ) − 1 3 \left(- \frac{2}{5} + 0\right) - \frac{1}{3} ( − 5 2 + 0 ) − 3 1 − 11 15 - \frac{11}{15} − 15 11 1 ( − 2 5 ) ( − 1 3 ) 1 \left(- \frac{2}{5}\right) \left(- \frac{1}{3}\right) 1 ( − 5 2 ) ( − 3 1 )
Теорема Виета
перепишем уравнение15 x 2 + 11 x + 2 = 0 15 x^{2} + 11 x + 2 = 0 15 x 2 + 11 x + 2 = 0 изa x 2 + b x + c = 0 a x^{2} + b x + c = 0 a x 2 + b x + c = 0 как приведённое квадратное уравнениеx 2 + b x a + c a = 0 x^{2} + \frac{b x}{a} + \frac{c}{a} = 0 x 2 + a b x + a c = 0 x 2 + 11 x 15 + 2 15 = 0 x^{2} + \frac{11 x}{15} + \frac{2}{15} = 0 x 2 + 15 11 x + 15 2 = 0 p x + q + x 2 = 0 p x + q + x^{2} = 0 p x + q + x 2 = 0 гдеp = b a p = \frac{b}{a} p = a b p = 11 15 p = \frac{11}{15} p = 15 11 q = c a q = \frac{c}{a} q = a c q = 2 15 q = \frac{2}{15} q = 15 2 Формулы Виетаx 1 + x 2 = − p x_{1} + x_{2} = - p x 1 + x 2 = − p x 1 x 2 = q x_{1} x_{2} = q x 1 x 2 = q x 1 + x 2 = − 11 15 x_{1} + x_{2} = - \frac{11}{15} x 1 + x 2 = − 15 11 x 1 x 2 = 2 15 x_{1} x_{2} = \frac{2}{15} x 1 x 2 = 15 2