18x-8x^2=0 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: 18x-8x^2=0

    Решение

    Вы ввели [src]
              2    
    18*x - 8*x  = 0
    8x2+18x=0- 8 x^{2} + 18 x = 0
    Подробное решение
    Это уравнение вида
    a*x^2 + b*x + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    x1=Db2ax_{1} = \frac{\sqrt{D} - b}{2 a}
    x2=Db2ax_{2} = \frac{- \sqrt{D} - b}{2 a}
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    a=8a = -8
    b=18b = 18
    c=0c = 0
    , то
    D = b^2 - 4 * a * c = 

    (18)^2 - 4 * (-8) * (0) = 324

    Т.к. D > 0, то уравнение имеет два корня.
    x1 = (-b + sqrt(D)) / (2*a)

    x2 = (-b - sqrt(D)) / (2*a)

    или
    x1=0x_{1} = 0
    Упростить
    x2=94x_{2} = \frac{9}{4}
    Упростить
    График
    05-15-10-51015-10001000
    Быстрый ответ [src]
    x1 = 0
    x1=0x_{1} = 0
    x2 = 9/4
    x2=94x_{2} = \frac{9}{4}
    Сумма и произведение корней [src]
    сумма
    0 + 0 + 9/4
    (0+0)+94\left(0 + 0\right) + \frac{9}{4}
    =
    9/4
    94\frac{9}{4}
    произведение
    1*0*9/4
    10941 \cdot 0 \cdot \frac{9}{4}
    =
    0
    00
    Теорема Виета
    перепишем уравнение
    8x2+18x=0- 8 x^{2} + 18 x = 0
    из
    ax2+bx+c=0a x^{2} + b x + c = 0
    как приведённое квадратное уравнение
    x2+bxa+ca=0x^{2} + \frac{b x}{a} + \frac{c}{a} = 0
    x29x4=0x^{2} - \frac{9 x}{4} = 0
    px+q+x2=0p x + q + x^{2} = 0
    где
    p=bap = \frac{b}{a}
    p=94p = - \frac{9}{4}
    q=caq = \frac{c}{a}
    q=0q = 0
    Формулы Виета
    x1+x2=px_{1} + x_{2} = - p
    x1x2=qx_{1} x_{2} = q
    x1+x2=94x_{1} + x_{2} = \frac{9}{4}
    x1x2=0x_{1} x_{2} = 0
    Численный ответ [src]
    x1 = 2.25
    x2 = 0.0
    График
    18x-8x^2=0 (уравнение) /media/krcore-image-pods/hash/equation/2/0e/2606beee5724832771e1038fafb11.png