12x^2+3x=0 (уравнение) Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: 12x^2+3x=0
Решение
Подробное решение
Это уравнение видаa*x^2 + b*x + c = 0 Квадратное уравнение можно решить с помощью дискриминанта. Корни квадратного уравнения:x 1 = D − b 2 a x_{1} = \frac{\sqrt{D} - b}{2 a} x 1 = 2 a D − b x 2 = − D − b 2 a x_{2} = \frac{- \sqrt{D} - b}{2 a} x 2 = 2 a − D − b где D = b^2 - 4*a*c - это дискриминант. Т.к.a = 12 a = 12 a = 12 b = 3 b = 3 b = 3 c = 0 c = 0 c = 0 , тоD = b^2 - 4 * a * c = (3)^2 - 4 * (12) * (0) = 9 Т.к. D > 0, то уравнение имеет два корня.x1 = (-b + sqrt(D)) / (2*a) x2 = (-b - sqrt(D)) / (2*a) илиx 1 = 0 x_{1} = 0 x 1 = 0 Упростить x 2 = − 1 4 x_{2} = - \frac{1}{4} x 2 = − 4 1 Упростить
График
-15.0 -12.5 -10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 15.0 10.0 12.5 2000 -1000
x 1 = − 1 4 x_{1} = - \frac{1}{4} x 1 = − 4 1
Сумма и произведение корней
[src] ( − 1 4 + 0 ) + 0 \left(- \frac{1}{4} + 0\right) + 0 ( − 4 1 + 0 ) + 0 1 ( − 1 4 ) 0 1 \left(- \frac{1}{4}\right) 0 1 ( − 4 1 ) 0
Теорема Виета
перепишем уравнение12 x 2 + 3 x = 0 12 x^{2} + 3 x = 0 12 x 2 + 3 x = 0 изa x 2 + b x + c = 0 a x^{2} + b x + c = 0 a x 2 + b x + c = 0 как приведённое квадратное уравнениеx 2 + b x a + c a = 0 x^{2} + \frac{b x}{a} + \frac{c}{a} = 0 x 2 + a b x + a c = 0 x 2 + x 4 = 0 x^{2} + \frac{x}{4} = 0 x 2 + 4 x = 0 p x + q + x 2 = 0 p x + q + x^{2} = 0 p x + q + x 2 = 0 гдеp = b a p = \frac{b}{a} p = a b p = 1 4 p = \frac{1}{4} p = 4 1 q = c a q = \frac{c}{a} q = a c q = 0 q = 0 q = 0 Формулы Виетаx 1 + x 2 = − p x_{1} + x_{2} = - p x 1 + x 2 = − p x 1 x 2 = q x_{1} x_{2} = q x 1 x 2 = q x 1 + x 2 = − 1 4 x_{1} + x_{2} = - \frac{1}{4} x 1 + x 2 = − 4 1 x 1 x 2 = 0 x_{1} x_{2} = 0 x 1 x 2 = 0