2х²-х+3=0 (уравнение) Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: 2х²-х+3=0
Решение
Подробное решение
Это уравнение видаa*x^2 + b*x + c = 0 Квадратное уравнение можно решить с помощью дискриминанта. Корни квадратного уравнения:x 1 = D − b 2 a x_{1} = \frac{\sqrt{D} - b}{2 a} x 1 = 2 a D − b x 2 = − D − b 2 a x_{2} = \frac{- \sqrt{D} - b}{2 a} x 2 = 2 a − D − b где D = b^2 - 4*a*c - это дискриминант. Т.к.a = 2 a = 2 a = 2 b = − 1 b = -1 b = − 1 c = 3 c = 3 c = 3 , тоD = b^2 - 4 * a * c = (-1)^2 - 4 * (2) * (3) = -23 Т.к. D < 0, то уравнение не имеет вещественных корней, но комплексные корни имеются.x1 = (-b + sqrt(D)) / (2*a) x2 = (-b - sqrt(D)) / (2*a) илиx 1 = 1 4 + 23 i 4 x_{1} = \frac{1}{4} + \frac{\sqrt{23} i}{4} x 1 = 4 1 + 4 23 i Упростить x 2 = 1 4 − 23 i 4 x_{2} = \frac{1}{4} - \frac{\sqrt{23} i}{4} x 2 = 4 1 − 4 23 i Упростить
График
-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0 20
____
1 I*\/ 23
x1 = - - --------
4 4 x 1 = 1 4 − 23 i 4 x_{1} = \frac{1}{4} - \frac{\sqrt{23} i}{4} x 1 = 4 1 − 4 23 i ____
1 I*\/ 23
x2 = - + --------
4 4 x 2 = 1 4 + 23 i 4 x_{2} = \frac{1}{4} + \frac{\sqrt{23} i}{4} x 2 = 4 1 + 4 23 i
Сумма и произведение корней
[src] ____ ____
1 I*\/ 23 1 I*\/ 23
0 + - - -------- + - + --------
4 4 4 4 ( 0 + ( 1 4 − 23 i 4 ) ) + ( 1 4 + 23 i 4 ) \left(0 + \left(\frac{1}{4} - \frac{\sqrt{23} i}{4}\right)\right) + \left(\frac{1}{4} + \frac{\sqrt{23} i}{4}\right) ( 0 + ( 4 1 − 4 23 i ) ) + ( 4 1 + 4 23 i ) / ____\ / ____\
|1 I*\/ 23 | |1 I*\/ 23 |
1*|- - --------|*|- + --------|
\4 4 / \4 4 / 1 ⋅ ( 1 4 − 23 i 4 ) ( 1 4 + 23 i 4 ) 1 \cdot \left(\frac{1}{4} - \frac{\sqrt{23} i}{4}\right) \left(\frac{1}{4} + \frac{\sqrt{23} i}{4}\right) 1 ⋅ ( 4 1 − 4 23 i ) ( 4 1 + 4 23 i )
Теорема Виета
перепишем уравнение2 x 2 − x + 3 = 0 2 x^{2} - x + 3 = 0 2 x 2 − x + 3 = 0 изa x 2 + b x + c = 0 a x^{2} + b x + c = 0 a x 2 + b x + c = 0 как приведённое квадратное уравнениеx 2 + b x a + c a = 0 x^{2} + \frac{b x}{a} + \frac{c}{a} = 0 x 2 + a b x + a c = 0 x 2 − x 2 + 3 2 = 0 x^{2} - \frac{x}{2} + \frac{3}{2} = 0 x 2 − 2 x + 2 3 = 0 p x + q + x 2 = 0 p x + q + x^{2} = 0 p x + q + x 2 = 0 гдеp = b a p = \frac{b}{a} p = a b p = − 1 2 p = - \frac{1}{2} p = − 2 1 q = c a q = \frac{c}{a} q = a c q = 3 2 q = \frac{3}{2} q = 2 3 Формулы Виетаx 1 + x 2 = − p x_{1} + x_{2} = - p x 1 + x 2 = − p x 1 x 2 = q x_{1} x_{2} = q x 1 x 2 = q x 1 + x 2 = 1 2 x_{1} + x_{2} = \frac{1}{2} x 1 + x 2 = 2 1 x 1 x 2 = 3 2 x_{1} x_{2} = \frac{3}{2} x 1 x 2 = 2 3 x1 = 0.25 + 1.19895788082818*i x2 = 0.25 - 1.19895788082818*i