3х^2-8х+5=0 (уравнение) Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: 3х^2-8х+5=0
Решение
Подробное решение
Это уравнение видаa*x^2 + b*x + c = 0 Квадратное уравнение можно решить с помощью дискриминанта. Корни квадратного уравнения:x 1 = D − b 2 a x_{1} = \frac{\sqrt{D} - b}{2 a} x 1 = 2 a D − b x 2 = − D − b 2 a x_{2} = \frac{- \sqrt{D} - b}{2 a} x 2 = 2 a − D − b где D = b^2 - 4*a*c - это дискриминант. Т.к.a = 3 a = 3 a = 3 b = − 8 b = -8 b = − 8 c = 5 c = 5 c = 5 , тоD = b^2 - 4 * a * c = (-8)^2 - 4 * (3) * (5) = 4 Т.к. D > 0, то уравнение имеет два корня.x1 = (-b + sqrt(D)) / (2*a) x2 = (-b - sqrt(D)) / (2*a) илиx 1 = 5 3 x_{1} = \frac{5}{3} x 1 = 3 5 Упростить x 2 = 1 x_{2} = 1 x 2 = 1 Упростить
График
-12.5 -10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 17.5 10.0 12.5 15.0 -500 500
x 2 = 5 3 x_{2} = \frac{5}{3} x 2 = 3 5
Сумма и произведение корней
[src] ( 0 + 1 ) + 5 3 \left(0 + 1\right) + \frac{5}{3} ( 0 + 1 ) + 3 5 1 ⋅ 1 ⋅ 5 3 1 \cdot 1 \cdot \frac{5}{3} 1 ⋅ 1 ⋅ 3 5
Теорема Виета
перепишем уравнение3 x 2 − 8 x + 5 = 0 3 x^{2} - 8 x + 5 = 0 3 x 2 − 8 x + 5 = 0 изa x 2 + b x + c = 0 a x^{2} + b x + c = 0 a x 2 + b x + c = 0 как приведённое квадратное уравнениеx 2 + b x a + c a = 0 x^{2} + \frac{b x}{a} + \frac{c}{a} = 0 x 2 + a b x + a c = 0 x 2 − 8 x 3 + 5 3 = 0 x^{2} - \frac{8 x}{3} + \frac{5}{3} = 0 x 2 − 3 8 x + 3 5 = 0 p x + q + x 2 = 0 p x + q + x^{2} = 0 p x + q + x 2 = 0 гдеp = b a p = \frac{b}{a} p = a b p = − 8 3 p = - \frac{8}{3} p = − 3 8 q = c a q = \frac{c}{a} q = a c q = 5 3 q = \frac{5}{3} q = 3 5 Формулы Виетаx 1 + x 2 = − p x_{1} + x_{2} = - p x 1 + x 2 = − p x 1 x 2 = q x_{1} x_{2} = q x 1 x 2 = q x 1 + x 2 = 8 3 x_{1} + x_{2} = \frac{8}{3} x 1 + x 2 = 3 8 x 1 x 2 = 5 3 x_{1} x_{2} = \frac{5}{3} x 1 x 2 = 3 5