Решите уравнение 4x^2+2x=0 (4 х в квадрате плюс 2 х равно 0) - Найдите корень уравнения подробно по-шагам. [Есть ответ!]

4x^2+2x=0 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: 4x^2+2x=0

    Решение

    Вы ввели [src]
       2          
    4*x  + 2*x = 0
    $$4 x^{2} + 2 x = 0$$
    Подробное решение
    Это уравнение вида
    a*x^2 + b*x + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    $$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
    $$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    $$a = 4$$
    $$b = 2$$
    $$c = 0$$
    , то
    D = b^2 - 4 * a * c = 

    (2)^2 - 4 * (4) * (0) = 4

    Т.к. D > 0, то уравнение имеет два корня.
    x1 = (-b + sqrt(D)) / (2*a)

    x2 = (-b - sqrt(D)) / (2*a)

    или
    $$x_{1} = 0$$
    $$x_{2} = - \frac{1}{2}$$
    График
    Быстрый ответ [src]
    x1 = -1/2
    $$x_{1} = - \frac{1}{2}$$
    x2 = 0
    $$x_{2} = 0$$
    Численный ответ [src]
    x1 = -0.5
    x2 = 0.0
    График
    4x^2+2x=0 (уравнение) /media/krcore-image-pods/hash/equation/f/04/fe68065b661c27b63e9e7054c2b37.png