4х²-15+9=0 (уравнение) Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: 4х²-15+9=0
Решение
Подробное решение
Это уравнение видаa*x^2 + b*x + c = 0 Квадратное уравнение можно решить с помощью дискриминанта. Корни квадратного уравнения:x 1 = D − b 2 a x_{1} = \frac{\sqrt{D} - b}{2 a} x 1 = 2 a D − b x 2 = − D − b 2 a x_{2} = \frac{- \sqrt{D} - b}{2 a} x 2 = 2 a − D − b где D = b^2 - 4*a*c - это дискриминант. Т.к.a = 4 a = 4 a = 4 b = 0 b = 0 b = 0 c = − 6 c = -6 c = − 6 , тоD = b^2 - 4 * a * c = (0)^2 - 4 * (4) * (-6) = 96 Т.к. D > 0, то уравнение имеет два корня.x1 = (-b + sqrt(D)) / (2*a) x2 = (-b - sqrt(D)) / (2*a) илиx 1 = 6 2 x_{1} = \frac{\sqrt{6}}{2} x 1 = 2 6 Упростить x 2 = − 6 2 x_{2} = - \frac{\sqrt{6}}{2} x 2 = − 2 6 Упростить x 1 = − 6 2 x_{1} = - \frac{\sqrt{6}}{2} x 1 = − 2 6 x 2 = 6 2 x_{2} = \frac{\sqrt{6}}{2} x 2 = 2 6
Сумма и произведение корней
[src] ___ ___
\/ 6 \/ 6
- ----- + -----
2 2 − 6 2 + 6 2 - \frac{\sqrt{6}}{2} + \frac{\sqrt{6}}{2} − 2 6 + 2 6 ___ ___
-\/ 6 \/ 6
-------*-----
2 2 − 6 2 6 2 - \frac{\sqrt{6}}{2} \frac{\sqrt{6}}{2} − 2 6 2 6
Теорема Виета
перепишем уравнение( 4 x 2 − 15 ) + 9 = 0 \left(4 x^{2} - 15\right) + 9 = 0 ( 4 x 2 − 15 ) + 9 = 0 изa x 2 + b x + c = 0 a x^{2} + b x + c = 0 a x 2 + b x + c = 0 как приведённое квадратное уравнениеx 2 + b x a + c a = 0 x^{2} + \frac{b x}{a} + \frac{c}{a} = 0 x 2 + a b x + a c = 0 x 2 − 3 2 = 0 x^{2} - \frac{3}{2} = 0 x 2 − 2 3 = 0 p x + q + x 2 = 0 p x + q + x^{2} = 0 p x + q + x 2 = 0 гдеp = b a p = \frac{b}{a} p = a b p = 0 p = 0 p = 0 q = c a q = \frac{c}{a} q = a c q = − 3 2 q = - \frac{3}{2} q = − 2 3 Формулы Виетаx 1 + x 2 = − p x_{1} + x_{2} = - p x 1 + x 2 = − p x 1 x 2 = q x_{1} x_{2} = q x 1 x 2 = q x 1 + x 2 = 0 x_{1} + x_{2} = 0 x 1 + x 2 = 0 x 1 x 2 = − 3 2 x_{1} x_{2} = - \frac{3}{2} x 1 x 2 = − 2 3