Решите уравнение 4х²+5х-1=0 (4х² плюс 5х минус 1 равно 0) - Найдите корень уравнения подробно по-шагам. [Есть ответ!]

4х²+5х-1=0 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: 4х²+5х-1=0

    Решение

    Вы ввели [src]
       2              
    4*x  + 5*x - 1 = 0
    $$4 x^{2} + 5 x - 1 = 0$$
    Подробное решение
    Это уравнение вида
    a*x^2 + b*x + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    $$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
    $$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    $$a = 4$$
    $$b = 5$$
    $$c = -1$$
    , то
    D = b^2 - 4 * a * c = 

    (5)^2 - 4 * (4) * (-1) = 41

    Т.к. D > 0, то уравнение имеет два корня.
    x1 = (-b + sqrt(D)) / (2*a)

    x2 = (-b - sqrt(D)) / (2*a)

    или
    $$x_{1} = - \frac{5}{8} + \frac{\sqrt{41}}{8}$$
    Упростить
    $$x_{2} = - \frac{\sqrt{41}}{8} - \frac{5}{8}$$
    Упростить
    График
    Быстрый ответ [src]
                 ____
           5   \/ 41 
    x1 = - - + ------
           8     8   
    $$x_{1} = - \frac{5}{8} + \frac{\sqrt{41}}{8}$$
                 ____
           5   \/ 41 
    x2 = - - - ------
           8     8   
    $$x_{2} = - \frac{\sqrt{41}}{8} - \frac{5}{8}$$
    Сумма и произведение корней [src]
    сумма
                ____           ____
          5   \/ 41      5   \/ 41 
    0 + - - + ------ + - - - ------
          8     8        8     8   
    $$\left(- \frac{\sqrt{41}}{8} - \frac{5}{8}\right) - \left(\frac{5}{8} - \frac{\sqrt{41}}{8}\right)$$
    =
    -5/4
    $$- \frac{5}{4}$$
    произведение
      /        ____\ /        ____\
      |  5   \/ 41 | |  5   \/ 41 |
    1*|- - + ------|*|- - - ------|
      \  8     8   / \  8     8   /
    $$1 \left(- \frac{5}{8} + \frac{\sqrt{41}}{8}\right) \left(- \frac{\sqrt{41}}{8} - \frac{5}{8}\right)$$
    =
    -1/4
    $$- \frac{1}{4}$$
    Теорема Виета
    перепишем уравнение
    $$4 x^{2} + 5 x - 1 = 0$$
    из
    $$a x^{2} + b x + c = 0$$
    как приведённое квадратное уравнение
    $$x^{2} + \frac{b x}{a} + \frac{c}{a} = 0$$
    $$x^{2} + \frac{5 x}{4} - \frac{1}{4} = 0$$
    $$p x + q + x^{2} = 0$$
    где
    $$p = \frac{b}{a}$$
    $$p = \frac{5}{4}$$
    $$q = \frac{c}{a}$$
    $$q = - \frac{1}{4}$$
    Формулы Виета
    $$x_{1} + x_{2} = - p$$
    $$x_{1} x_{2} = q$$
    $$x_{1} + x_{2} = - \frac{5}{4}$$
    $$x_{1} x_{2} = - \frac{1}{4}$$
    Численный ответ [src]
    x1 = 0.175390529679106
    x2 = -1.42539052967911
    График
    4х²+5х-1=0 (уравнение) /media/krcore-image-pods/hash/equation/6/d3/2354ab789bf4d438ff2c947a24dd6.png