Дано уравнение: 4x3−9x=0 преобразуем Вынесем общий множитель x за скобки получим: x(4x2−9)=0 тогда: x1=0 и также получаем ур-ние 4x2−9=0 Это уравнение вида
a*x^2 + b*x + c = 0
Квадратное уравнение можно решить с помощью дискриминанта. Корни квадратного уравнения: x2=2aD−b x3=2a−D−b где D = b^2 - 4*a*c - это дискриминант. Т.к. a=4 b=0 c=−9 , то
D = b^2 - 4 * a * c =
(0)^2 - 4 * (4) * (-9) = 144
Т.к. D > 0, то уравнение имеет два корня.
x2 = (-b + sqrt(D)) / (2*a)
x3 = (-b - sqrt(D)) / (2*a)
или x2=23 Упростить x3=−23 Упростить Получаем окончательный ответ для (4*x^3 - 9*x) + 0 = 0: x1=0 x2=23 x3=−23