5х^2+4х-1=0 (уравнение) Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: 5х^2+4х-1=0
Решение
Подробное решение
Это уравнение видаa*x^2 + b*x + c = 0 Квадратное уравнение можно решить с помощью дискриминанта. Корни квадратного уравнения:x 1 = D − b 2 a x_{1} = \frac{\sqrt{D} - b}{2 a} x 1 = 2 a D − b x 2 = − D − b 2 a x_{2} = \frac{- \sqrt{D} - b}{2 a} x 2 = 2 a − D − b где D = b^2 - 4*a*c - это дискриминант. Т.к.a = 5 a = 5 a = 5 b = 4 b = 4 b = 4 c = − 1 c = -1 c = − 1 , тоD = b^2 - 4 * a * c = (4)^2 - 4 * (5) * (-1) = 36 Т.к. D > 0, то уравнение имеет два корня.x1 = (-b + sqrt(D)) / (2*a) x2 = (-b - sqrt(D)) / (2*a) илиx 1 = 1 5 x_{1} = \frac{1}{5} x 1 = 5 1 Упростить x 2 = − 1 x_{2} = -1 x 2 = − 1 Упростить
График
-15.0 -12.5 -10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0 -500 1000
x 2 = 1 5 x_{2} = \frac{1}{5} x 2 = 5 1
Сумма и произведение корней
[src] ( − 1 + 0 ) + 1 5 \left(-1 + 0\right) + \frac{1}{5} ( − 1 + 0 ) + 5 1 1 ( − 1 ) 1 5 1 \left(-1\right) \frac{1}{5} 1 ( − 1 ) 5 1
Теорема Виета
перепишем уравнение5 x 2 + 4 x − 1 = 0 5 x^{2} + 4 x - 1 = 0 5 x 2 + 4 x − 1 = 0 изa x 2 + b x + c = 0 a x^{2} + b x + c = 0 a x 2 + b x + c = 0 как приведённое квадратное уравнениеx 2 + b x a + c a = 0 x^{2} + \frac{b x}{a} + \frac{c}{a} = 0 x 2 + a b x + a c = 0 x 2 + 4 x 5 − 1 5 = 0 x^{2} + \frac{4 x}{5} - \frac{1}{5} = 0 x 2 + 5 4 x − 5 1 = 0 p x + q + x 2 = 0 p x + q + x^{2} = 0 p x + q + x 2 = 0 гдеp = b a p = \frac{b}{a} p = a b p = 4 5 p = \frac{4}{5} p = 5 4 q = c a q = \frac{c}{a} q = a c q = − 1 5 q = - \frac{1}{5} q = − 5 1 Формулы Виетаx 1 + x 2 = − p x_{1} + x_{2} = - p x 1 + x 2 = − p x 1 x 2 = q x_{1} x_{2} = q x 1 x 2 = q x 1 + x 2 = − 4 5 x_{1} + x_{2} = - \frac{4}{5} x 1 + x 2 = − 5 4 x 1 x 2 = − 1 5 x_{1} x_{2} = - \frac{1}{5} x 1 x 2 = − 5 1