6x²+4x-16=0 (уравнение) Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: 6x²+4x-16=0
Решение
Подробное решение
Это уравнение видаa*x^2 + b*x + c = 0 Квадратное уравнение можно решить с помощью дискриминанта. Корни квадратного уравнения:x 1 = D − b 2 a x_{1} = \frac{\sqrt{D} - b}{2 a} x 1 = 2 a D − b x 2 = − D − b 2 a x_{2} = \frac{- \sqrt{D} - b}{2 a} x 2 = 2 a − D − b где D = b^2 - 4*a*c - это дискриминант. Т.к.a = 6 a = 6 a = 6 b = 4 b = 4 b = 4 c = − 16 c = -16 c = − 16 , тоD = b^2 - 4 * a * c = (4)^2 - 4 * (6) * (-16) = 400 Т.к. D > 0, то уравнение имеет два корня.x1 = (-b + sqrt(D)) / (2*a) x2 = (-b - sqrt(D)) / (2*a) илиx 1 = 4 3 x_{1} = \frac{4}{3} x 1 = 3 4 Упростить x 2 = − 2 x_{2} = -2 x 2 = − 2 Упростить x 2 = 4 3 x_{2} = \frac{4}{3} x 2 = 3 4
Сумма и произведение корней
[src] ( − 2 + 0 ) + 4 3 \left(-2 + 0\right) + \frac{4}{3} ( − 2 + 0 ) + 3 4 1 ( − 2 ) 4 3 1 \left(-2\right) \frac{4}{3} 1 ( − 2 ) 3 4
Теорема Виета
перепишем уравнение6 x 2 + 4 x − 16 = 0 6 x^{2} + 4 x - 16 = 0 6 x 2 + 4 x − 16 = 0 изa x 2 + b x + c = 0 a x^{2} + b x + c = 0 a x 2 + b x + c = 0 как приведённое квадратное уравнениеx 2 + b x a + c a = 0 x^{2} + \frac{b x}{a} + \frac{c}{a} = 0 x 2 + a b x + a c = 0 x 2 + 2 x 3 − 8 3 = 0 x^{2} + \frac{2 x}{3} - \frac{8}{3} = 0 x 2 + 3 2 x − 3 8 = 0 p x + q + x 2 = 0 p x + q + x^{2} = 0 p x + q + x 2 = 0 гдеp = b a p = \frac{b}{a} p = a b p = 2 3 p = \frac{2}{3} p = 3 2 q = c a q = \frac{c}{a} q = a c q = − 8 3 q = - \frac{8}{3} q = − 3 8 Формулы Виетаx 1 + x 2 = − p x_{1} + x_{2} = - p x 1 + x 2 = − p x 1 x 2 = q x_{1} x_{2} = q x 1 x 2 = q x 1 + x 2 = − 2 3 x_{1} + x_{2} = - \frac{2}{3} x 1 + x 2 = − 3 2 x 1 x 2 = − 8 3 x_{1} x_{2} = - \frac{8}{3} x 1 x 2 = − 3 8