6x^5+22=0 (уравнение) Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: 6x^5+22=0
Решение
Подробное решение
Дано уравнение6 x 5 + 22 = 0 6 x^{5} + 22 = 0 6 x 5 + 22 = 0 Т.к. степень в ур-нии равна = 5 - не содержит чётного числа в числителе, то ур-ние будет иметь один действительный корень. Извлечём корень 5-й степени из обеих частей ур-ния: Получим:6 5 ( 1 x + 0 ) 5 5 = − 22 5 \sqrt[5]{6} \sqrt[5]{\left(1 x + 0\right)^{5}} = \sqrt[5]{-22} 5 6 5 ( 1 x + 0 ) 5 = 5 − 22 или6 5 x = − 22 5 \sqrt[5]{6} x = \sqrt[5]{-22} 5 6 x = 5 − 22 Раскрываем скобочки в левой части ур-нияx*6^1/5 = (-22)^(1/5) Раскрываем скобочки в правой части ур-нияx*6^1/5 = -22^1/5 Разделим обе части ур-ния на 6^(1/5)x = (-22)^(1/5) / (6^(1/5)) Получим ответ: x = (-11)^(1/5)*3^(4/5)/3 Остальные 4 корня(ей) являются комплексными. сделаем замену:z = x z = x z = x тогда ур-ние будет таким:z 5 = − 11 3 z^{5} = - \frac{11}{3} z 5 = − 3 11 Любое комплексное число можно представить так:z = r e i p z = r e^{i p} z = r e i p подставляем в уравнениеr 5 e 5 i p = − 11 3 r^{5} e^{5 i p} = - \frac{11}{3} r 5 e 5 i p = − 3 11 гдеr = 11 5 ⋅ 3 4 5 3 r = \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}}}{3} r = 3 5 11 ⋅ 3 5 4 - модуль комплексного числа Подставляем r:e 5 i p = − 1 e^{5 i p} = -1 e 5 i p = − 1 Используя формулу Эйлера, найдём корни для pi sin ( 5 p ) + cos ( 5 p ) = − 1 i \sin{\left(5 p \right)} + \cos{\left(5 p \right)} = -1 i sin ( 5 p ) + cos ( 5 p ) = − 1 значитcos ( 5 p ) = − 1 \cos{\left(5 p \right)} = -1 cos ( 5 p ) = − 1 иsin ( 5 p ) = 0 \sin{\left(5 p \right)} = 0 sin ( 5 p ) = 0 тогдаp = 2 π N 5 + π 5 p = \frac{2 \pi N}{5} + \frac{\pi}{5} p = 5 2 π N + 5 π где N=0,1,2,3,... Перебирая значения N и подставив p в формулу для z Значит, решением будет для z:z 1 = − 11 5 ⋅ 3 4 5 3 z_{1} = - \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}}}{3} z 1 = − 3 5 11 ⋅ 3 5 4 z 2 = 11 5 ⋅ 3 4 5 12 + 11 5 ⋅ 3 4 5 5 12 + 11 5 ⋅ 3 4 5 i 5 8 − 5 8 3 z_{2} = \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}}}{12} + \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{5}}{12} + \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{3} z 2 = 12 5 11 ⋅ 3 5 4 + 12 5 11 ⋅ 3 5 4 5 + 3 5 11 ⋅ 3 5 4 i 8 5 − 8 5 z 3 = − 11 5 ⋅ 3 4 5 5 12 + 11 5 ⋅ 3 4 5 12 − 11 5 ⋅ 3 4 5 5 i 5 8 − 5 8 6 − 11 5 ⋅ 3 4 5 i 5 8 − 5 8 6 z_{3} = - \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{5}}{12} + \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}}}{12} - \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{5} i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{6} - \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{6} z 3 = − 12 5 11 ⋅ 3 5 4 5 + 12 5 11 ⋅ 3 5 4 − 6 5 11 ⋅ 3 5 4 5 i 8 5 − 8 5 − 6 5 11 ⋅ 3 5 4 i 8 5 − 8 5 z 4 = 11 5 ⋅ 3 4 5 12 + 11 5 ⋅ 3 4 5 5 8 − 5 8 5 8 + 5 8 3 − 11 5 ⋅ 3 4 5 5 i 5 8 + 5 8 12 − 11 5 ⋅ 3 4 5 i 5 8 + 5 8 12 − 11 5 ⋅ 3 4 5 i 5 8 − 5 8 12 + 11 5 ⋅ 3 4 5 5 i 5 8 − 5 8 12 z_{4} = \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}}}{12} + \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{3} - \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{5} i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{12} - \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{12} - \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{12} + \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{5} i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{12} z 4 = 12 5 11 ⋅ 3 5 4 + 3 5 11 ⋅ 3 5 4 8 5 − 8 5 8 5 + 8 5 − 12 5 11 ⋅ 3 5 4 5 i 8 5 + 8 5 − 12 5 11 ⋅ 3 5 4 i 8 5 + 8 5 − 12 5 11 ⋅ 3 5 4 i 8 5 − 8 5 + 12 5 11 ⋅ 3 5 4 5 i 8 5 − 8 5 z 5 = − 11 5 ⋅ 3 4 5 5 8 − 5 8 5 8 + 5 8 3 + 11 5 ⋅ 3 4 5 12 − 11 5 ⋅ 3 4 5 i 5 8 − 5 8 12 + 11 5 ⋅ 3 4 5 i 5 8 + 5 8 12 + 11 5 ⋅ 3 4 5 5 i 5 8 − 5 8 12 + 11 5 ⋅ 3 4 5 5 i 5 8 + 5 8 12 z_{5} = - \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{3} + \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}}}{12} - \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{12} + \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{12} + \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{5} i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{12} + \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{5} i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{12} z 5 = − 3 5 11 ⋅ 3 5 4 8 5 − 8 5 8 5 + 8 5 + 12 5 11 ⋅ 3 5 4 − 12 5 11 ⋅ 3 5 4 i 8 5 − 8 5 + 12 5 11 ⋅ 3 5 4 i 8 5 + 8 5 + 12 5 11 ⋅ 3 5 4 5 i 8 5 − 8 5 + 12 5 11 ⋅ 3 5 4 5 i 8 5 + 8 5 делаем обратную заменуz = x z = x z = x x = z x = z x = z Тогда, окончательный ответ:x 1 = − 11 5 ⋅ 3 4 5 3 x_{1} = - \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}}}{3} x 1 = − 3 5 11 ⋅ 3 5 4 x 2 = 11 5 ⋅ 3 4 5 12 + 11 5 ⋅ 3 4 5 5 12 + 11 5 ⋅ 3 4 5 i 5 8 − 5 8 3 x_{2} = \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}}}{12} + \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{5}}{12} + \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{3} x 2 = 12 5 11 ⋅ 3 5 4 + 12 5 11 ⋅ 3 5 4 5 + 3 5 11 ⋅ 3 5 4 i 8 5 − 8 5 x 3 = − 11 5 ⋅ 3 4 5 5 12 + 11 5 ⋅ 3 4 5 12 − 11 5 ⋅ 3 4 5 5 i 5 8 − 5 8 6 − 11 5 ⋅ 3 4 5 i 5 8 − 5 8 6 x_{3} = - \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{5}}{12} + \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}}}{12} - \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{5} i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{6} - \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{6} x 3 = − 12 5 11 ⋅ 3 5 4 5 + 12 5 11 ⋅ 3 5 4 − 6 5 11 ⋅ 3 5 4 5 i 8 5 − 8 5 − 6 5 11 ⋅ 3 5 4 i 8 5 − 8 5 x 4 = 11 5 ⋅ 3 4 5 12 + 11 5 ⋅ 3 4 5 5 8 − 5 8 5 8 + 5 8 3 − 11 5 ⋅ 3 4 5 5 i 5 8 + 5 8 12 − 11 5 ⋅ 3 4 5 i 5 8 + 5 8 12 − 11 5 ⋅ 3 4 5 i 5 8 − 5 8 12 + 11 5 ⋅ 3 4 5 5 i 5 8 − 5 8 12 x_{4} = \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}}}{12} + \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{3} - \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{5} i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{12} - \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{12} - \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{12} + \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{5} i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{12} x 4 = 12 5 11 ⋅ 3 5 4 + 3 5 11 ⋅ 3 5 4 8 5 − 8 5 8 5 + 8 5 − 12 5 11 ⋅ 3 5 4 5 i 8 5 + 8 5 − 12 5 11 ⋅ 3 5 4 i 8 5 + 8 5 − 12 5 11 ⋅ 3 5 4 i 8 5 − 8 5 + 12 5 11 ⋅ 3 5 4 5 i 8 5 − 8 5 x 5 = − 11 5 ⋅ 3 4 5 5 8 − 5 8 5 8 + 5 8 3 + 11 5 ⋅ 3 4 5 12 − 11 5 ⋅ 3 4 5 i 5 8 − 5 8 12 + 11 5 ⋅ 3 4 5 i 5 8 + 5 8 12 + 11 5 ⋅ 3 4 5 5 i 5 8 − 5 8 12 + 11 5 ⋅ 3 4 5 5 i 5 8 + 5 8 12 x_{5} = - \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{3} + \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}}}{12} - \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{12} + \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{12} + \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{5} i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{12} + \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{5} i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{12} x 5 = − 3 5 11 ⋅ 3 5 4 8 5 − 8 5 8 5 + 8 5 + 12 5 11 ⋅ 3 5 4 − 12 5 11 ⋅ 3 5 4 i 8 5 − 8 5 + 12 5 11 ⋅ 3 5 4 i 8 5 + 8 5 + 12 5 11 ⋅ 3 5 4 5 i 8 5 − 8 5 + 12 5 11 ⋅ 3 5 4 5 i 8 5 + 8 5
График
-15.0 -12.5 -10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0 12.5 -1000000 1000000
4/5 5 ____
-3 *\/ 11
x1 = -------------
3 x 1 = − 11 5 ⋅ 3 4 5 3 x_{1} = - \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}}}{3} x 1 = − 3 5 11 ⋅ 3 5 4 / ___________ ___________\
| / ___ / ___ |
| 4/5 5 ____ / 5 \/ 5 4/5 ___ 5 ____ / 5 \/ 5 |
| 3 *\/ 11 * / - - ----- 3 *\/ 5 *\/ 11 * / - - ----- | 4/5 5 ____ 4/5 ___ 5 ____
| \/ 8 8 \/ 8 8 | 3 *\/ 11 3 *\/ 5 *\/ 11
x2 = I*|- ---------------------------- - ----------------------------------| + ----------- - -----------------
\ 6 6 / 12 12 x 2 = − 11 5 ⋅ 3 4 5 5 12 + 11 5 ⋅ 3 4 5 12 + i ( − 11 5 ⋅ 3 4 5 5 5 8 − 5 8 6 − 11 5 ⋅ 3 4 5 5 8 − 5 8 6 ) x_{2} = - \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{5}}{12} + \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}}}{12} + i \left(- \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{5} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{6} - \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{6}\right) x 2 = − 12 5 11 ⋅ 3 5 4 5 + 12 5 11 ⋅ 3 5 4 + i − 6 5 11 ⋅ 3 5 4 5 8 5 − 8 5 − 6 5 11 ⋅ 3 5 4 8 5 − 8 5 / ___________ ___________ ___________ ___________\ ___________ ___________
| / ___ / ___ / ___ / ___ | / ___ / ___
| 4/5 5 ____ / 5 \/ 5 4/5 5 ____ / 5 \/ 5 4/5 ___ 5 ____ / 5 \/ 5 4/5 ___ 5 ____ / 5 \/ 5 | 4/5 5 ____ / 5 \/ 5 / 5 \/ 5
| 3 *\/ 11 * / - - ----- 3 *\/ 11 * / - + ----- 3 *\/ 5 *\/ 11 * / - + ----- 3 *\/ 5 *\/ 11 * / - - ----- | 4/5 5 ____ 3 *\/ 11 * / - - ----- * / - + -----
| \/ 8 8 \/ 8 8 \/ 8 8 \/ 8 8 | 3 *\/ 11 \/ 8 8 \/ 8 8
x3 = I*|- ---------------------------- - ---------------------------- - ---------------------------------- + ----------------------------------| + ----------- + ---------------------------------------------
\ 12 12 12 12 / 12 3 x 3 = 11 5 ⋅ 3 4 5 12 + 11 5 ⋅ 3 4 5 5 8 − 5 8 5 8 + 5 8 3 + i ( − 11 5 ⋅ 3 4 5 5 5 8 + 5 8 12 − 11 5 ⋅ 3 4 5 5 8 + 5 8 12 − 11 5 ⋅ 3 4 5 5 8 − 5 8 12 + 11 5 ⋅ 3 4 5 5 5 8 − 5 8 12 ) x_{3} = \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}}}{12} + \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{3} + i \left(- \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{5} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{12} - \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{12} - \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{12} + \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{5} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{12}\right) x 3 = 12 5 11 ⋅ 3 5 4 + 3 5 11 ⋅ 3 5 4 8 5 − 8 5 8 5 + 8 5 + i − 12 5 11 ⋅ 3 5 4 5 8 5 + 8 5 − 12 5 11 ⋅ 3 5 4 8 5 + 8 5 − 12 5 11 ⋅ 3 5 4 8 5 − 8 5 + 12 5 11 ⋅ 3 5 4 5 8 5 − 8 5 / ___________ ___________ ___________ ___________\ ___________ ___________
| / ___ / ___ / ___ / ___ | / ___ / ___
| 4/5 5 ____ / 5 \/ 5 4/5 5 ____ / 5 \/ 5 4/5 ___ 5 ____ / 5 \/ 5 4/5 ___ 5 ____ / 5 \/ 5 | 4/5 5 ____ / 5 \/ 5 / 5 \/ 5
| 3 *\/ 11 * / - - ----- 3 *\/ 11 * / - + ----- 3 *\/ 5 *\/ 11 * / - - ----- 3 *\/ 5 *\/ 11 * / - + ----- | 4/5 5 ____ 3 *\/ 11 * / - - ----- * / - + -----
| \/ 8 8 \/ 8 8 \/ 8 8 \/ 8 8 | 3 *\/ 11 \/ 8 8 \/ 8 8
x4 = I*|- ---------------------------- + ---------------------------- + ---------------------------------- + ----------------------------------| + ----------- - ---------------------------------------------
\ 12 12 12 12 / 12 3 x 4 = − 11 5 ⋅ 3 4 5 5 8 − 5 8 5 8 + 5 8 3 + 11 5 ⋅ 3 4 5 12 + i ( − 11 5 ⋅ 3 4 5 5 8 − 5 8 12 + 11 5 ⋅ 3 4 5 5 8 + 5 8 12 + 11 5 ⋅ 3 4 5 5 5 8 − 5 8 12 + 11 5 ⋅ 3 4 5 5 5 8 + 5 8 12 ) x_{4} = - \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{3} + \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}}}{12} + i \left(- \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{12} + \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{12} + \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{5} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{12} + \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{5} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{12}\right) x 4 = − 3 5 11 ⋅ 3 5 4 8 5 − 8 5 8 5 + 8 5 + 12 5 11 ⋅ 3 5 4 + i − 12 5 11 ⋅ 3 5 4 8 5 − 8 5 + 12 5 11 ⋅ 3 5 4 8 5 + 8 5 + 12 5 11 ⋅ 3 5 4 5 8 5 − 8 5 + 12 5 11 ⋅ 3 5 4 5 8 5 + 8 5 ___________
/ ___
4/5 5 ____ / 5 \/ 5
4/5 5 ____ 4/5 ___ 5 ____ I*3 *\/ 11 * / - - -----
3 *\/ 11 3 *\/ 5 *\/ 11 \/ 8 8
x5 = ----------- + ----------------- + ------------------------------
12 12 3 x 5 = 11 5 ⋅ 3 4 5 12 + 11 5 ⋅ 3 4 5 5 12 + 11 5 ⋅ 3 4 5 i 5 8 − 5 8 3 x_{5} = \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}}}{12} + \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{5}}{12} + \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{3} x 5 = 12 5 11 ⋅ 3 5 4 + 12 5 11 ⋅ 3 5 4 5 + 3 5 11 ⋅ 3 5 4 i 8 5 − 8 5
Сумма и произведение корней
[src] / ___________ ___________\ / ___________ ___________ ___________ ___________\ ___________ ___________ / ___________ ___________ ___________ ___________\ ___________ ___________ ___________
| / ___ / ___ | | / ___ / ___ / ___ / ___ | / ___ / ___ | / ___ / ___ / ___ / ___ | / ___ / ___ / ___
| 4/5 5 ____ / 5 \/ 5 4/5 ___ 5 ____ / 5 \/ 5 | | 4/5 5 ____ / 5 \/ 5 4/5 5 ____ / 5 \/ 5 4/5 ___ 5 ____ / 5 \/ 5 4/5 ___ 5 ____ / 5 \/ 5 | 4/5 5 ____ / 5 \/ 5 / 5 \/ 5 | 4/5 5 ____ / 5 \/ 5 4/5 5 ____ / 5 \/ 5 4/5 ___ 5 ____ / 5 \/ 5 4/5 ___ 5 ____ / 5 \/ 5 | 4/5 5 ____ / 5 \/ 5 / 5 \/ 5 4/5 5 ____ / 5 \/ 5
4/5 5 ____ | 3 *\/ 11 * / - - ----- 3 *\/ 5 *\/ 11 * / - - ----- | 4/5 5 ____ 4/5 ___ 5 ____ | 3 *\/ 11 * / - - ----- 3 *\/ 11 * / - + ----- 3 *\/ 5 *\/ 11 * / - + ----- 3 *\/ 5 *\/ 11 * / - - ----- | 4/5 5 ____ 3 *\/ 11 * / - - ----- * / - + ----- | 3 *\/ 11 * / - - ----- 3 *\/ 11 * / - + ----- 3 *\/ 5 *\/ 11 * / - - ----- 3 *\/ 5 *\/ 11 * / - + ----- | 4/5 5 ____ 3 *\/ 11 * / - - ----- * / - + ----- 4/5 5 ____ 4/5 ___ 5 ____ I*3 *\/ 11 * / - - -----
3 *\/ 11 | \/ 8 8 \/ 8 8 | 3 *\/ 11 3 *\/ 5 *\/ 11 | \/ 8 8 \/ 8 8 \/ 8 8 \/ 8 8 | 3 *\/ 11 \/ 8 8 \/ 8 8 | \/ 8 8 \/ 8 8 \/ 8 8 \/ 8 8 | 3 *\/ 11 \/ 8 8 \/ 8 8 3 *\/ 11 3 *\/ 5 *\/ 11 \/ 8 8
0 - ----------- + I*|- ---------------------------- - ----------------------------------| + ----------- - ----------------- + I*|- ---------------------------- - ---------------------------- - ---------------------------------- + ----------------------------------| + ----------- + --------------------------------------------- + I*|- ---------------------------- + ---------------------------- + ---------------------------------- + ----------------------------------| + ----------- - --------------------------------------------- + ----------- + ----------------- + ------------------------------
3 \ 6 6 / 12 12 \ 12 12 12 12 / 12 3 \ 12 12 12 12 / 12 3 12 12 3 ( ( ( ( − 11 5 ⋅ 3 4 5 3 + 0 ) + ( − 11 5 ⋅ 3 4 5 5 12 + 11 5 ⋅ 3 4 5 12 + i ( − 11 5 ⋅ 3 4 5 5 5 8 − 5 8 6 − 11 5 ⋅ 3 4 5 5 8 − 5 8 6 ) ) ) + ( 11 5 ⋅ 3 4 5 12 + 11 5 ⋅ 3 4 5 5 8 − 5 8 5 8 + 5 8 3 + i ( − 11 5 ⋅ 3 4 5 5 5 8 + 5 8 12 − 11 5 ⋅ 3 4 5 5 8 + 5 8 12 − 11 5 ⋅ 3 4 5 5 8 − 5 8 12 + 11 5 ⋅ 3 4 5 5 5 8 − 5 8 12 ) ) ) + ( − 11 5 ⋅ 3 4 5 5 8 − 5 8 5 8 + 5 8 3 + 11 5 ⋅ 3 4 5 12 + i ( − 11 5 ⋅ 3 4 5 5 8 − 5 8 12 + 11 5 ⋅ 3 4 5 5 8 + 5 8 12 + 11 5 ⋅ 3 4 5 5 5 8 − 5 8 12 + 11 5 ⋅ 3 4 5 5 5 8 + 5 8 12 ) ) ) + ( 11 5 ⋅ 3 4 5 12 + 11 5 ⋅ 3 4 5 5 12 + 11 5 ⋅ 3 4 5 i 5 8 − 5 8 3 ) \left(\left(\left(\left(- \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}}}{3} + 0\right) + \left(- \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{5}}{12} + \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}}}{12} + i \left(- \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{5} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{6} - \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{6}\right)\right)\right) + \left(\frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}}}{12} + \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{3} + i \left(- \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{5} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{12} - \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{12} - \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{12} + \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{5} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{12}\right)\right)\right) + \left(- \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{3} + \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}}}{12} + i \left(- \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{12} + \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{12} + \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{5} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{12} + \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{5} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{12}\right)\right)\right) + \left(\frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}}}{12} + \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{5}}{12} + \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{3}\right) ( − 3 5 11 ⋅ 3 5 4 + 0 ) + − 12 5 11 ⋅ 3 5 4 5 + 12 5 11 ⋅ 3 5 4 + i − 6 5 11 ⋅ 3 5 4 5 8 5 − 8 5 − 6 5 11 ⋅ 3 5 4 8 5 − 8 5 + 12 5 11 ⋅ 3 5 4 + 3 5 11 ⋅ 3 5 4 8 5 − 8 5 8 5 + 8 5 + i − 12 5 11 ⋅ 3 5 4 5 8 5 + 8 5 − 12 5 11 ⋅ 3 5 4 8 5 + 8 5 − 12 5 11 ⋅ 3 5 4 8 5 − 8 5 + 12 5 11 ⋅ 3 5 4 5 8 5 − 8 5 + − 3 5 11 ⋅ 3 5 4 8 5 − 8 5 8 5 + 8 5 + 12 5 11 ⋅ 3 5 4 + i − 12 5 11 ⋅ 3 5 4 8 5 − 8 5 + 12 5 11 ⋅ 3 5 4 8 5 + 8 5 + 12 5 11 ⋅ 3 5 4 5 8 5 − 8 5 + 12 5 11 ⋅ 3 5 4 5 8 5 + 8 5 + 12 5 11 ⋅ 3 5 4 + 12 5 11 ⋅ 3 5 4 5 + 3 5 11 ⋅ 3 5 4 i 8 5 − 8 5 / ___________ ___________\ / ___________ ___________ ___________ ___________\ / ___________ ___________ ___________ ___________\ ___________
| / ___ / ___ | | / ___ / ___ / ___ / ___ | | / ___ / ___ / ___ / ___ | / ___
| 4/5 5 ____ / 5 \/ 5 4/5 ___ 5 ____ / 5 \/ 5 | | 4/5 5 ____ / 5 \/ 5 4/5 5 ____ / 5 \/ 5 4/5 ___ 5 ____ / 5 \/ 5 4/5 ___ 5 ____ / 5 \/ 5 | | 4/5 5 ____ / 5 \/ 5 4/5 5 ____ / 5 \/ 5 4/5 ___ 5 ____ / 5 \/ 5 4/5 ___ 5 ____ / 5 \/ 5 | 4/5 5 ____ / 5 \/ 5
| 3 *\/ 11 * / - - ----- 3 *\/ 5 *\/ 11 * / - - ----- | | 3 *\/ 11 * / - - ----- 3 *\/ 11 * / - + ----- 3 *\/ 5 *\/ 11 * / - + ----- 3 *\/ 5 *\/ 11 * / - - ----- | | 3 *\/ 11 * / - - ----- 3 *\/ 11 * / - + ----- 3 *\/ 5 *\/ 11 * / - - ----- 3 *\/ 5 *\/ 11 * / - + ----- | I*3 *\/ 11 * / - - -----
| \/ 8 8 \/ 8 8 | | \/ 8 8 \/ 8 8 \/ 8 8 \/ 8 8 | | \/ 8 8 \/ 8 8 \/ 8 8 \/ 8 8 | \/ 8 8
I*|- ---------------------------- - ----------------------------------| + I*|- ---------------------------- - ---------------------------- - ---------------------------------- + ----------------------------------| + I*|- ---------------------------- + ---------------------------- + ---------------------------------- + ----------------------------------| + ------------------------------
\ 6 6 / \ 12 12 12 12 / \ 12 12 12 12 / 3 i ( − 11 5 ⋅ 3 4 5 5 5 8 − 5 8 6 − 11 5 ⋅ 3 4 5 5 8 − 5 8 6 ) + i ( − 11 5 ⋅ 3 4 5 5 5 8 + 5 8 12 − 11 5 ⋅ 3 4 5 5 8 + 5 8 12 − 11 5 ⋅ 3 4 5 5 8 − 5 8 12 + 11 5 ⋅ 3 4 5 5 5 8 − 5 8 12 ) + 11 5 ⋅ 3 4 5 i 5 8 − 5 8 3 + i ( − 11 5 ⋅ 3 4 5 5 8 − 5 8 12 + 11 5 ⋅ 3 4 5 5 8 + 5 8 12 + 11 5 ⋅ 3 4 5 5 5 8 − 5 8 12 + 11 5 ⋅ 3 4 5 5 5 8 + 5 8 12 ) i \left(- \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{5} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{6} - \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{6}\right) + i \left(- \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{5} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{12} - \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{12} - \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{12} + \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{5} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{12}\right) + \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{3} + i \left(- \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{12} + \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{12} + \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{5} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{12} + \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{5} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{12}\right) i − 6 5 11 ⋅ 3 5 4 5 8 5 − 8 5 − 6 5 11 ⋅ 3 5 4 8 5 − 8 5 + i − 12 5 11 ⋅ 3 5 4 5 8 5 + 8 5 − 12 5 11 ⋅ 3 5 4 8 5 + 8 5 − 12 5 11 ⋅ 3 5 4 8 5 − 8 5 + 12 5 11 ⋅ 3 5 4 5 8 5 − 8 5 + 3 5 11 ⋅ 3 5 4 i 8 5 − 8 5 + i − 12 5 11 ⋅ 3 5 4 8 5 − 8 5 + 12 5 11 ⋅ 3 5 4 8 5 + 8 5 + 12 5 11 ⋅ 3 5 4 5 8 5 − 8 5 + 12 5 11 ⋅ 3 5 4 5 8 5 + 8 5 / / ___________ ___________\ \ / / ___________ ___________ ___________ ___________\ ___________ ___________\ / / ___________ ___________ ___________ ___________\ ___________ ___________\ / ___________\
| | / ___ / ___ | | | | / ___ / ___ / ___ / ___ | / ___ / ___ | | | / ___ / ___ / ___ / ___ | / ___ / ___ | | / ___ |
| | 4/5 5 ____ / 5 \/ 5 4/5 ___ 5 ____ / 5 \/ 5 | | | | 4/5 5 ____ / 5 \/ 5 4/5 5 ____ / 5 \/ 5 4/5 ___ 5 ____ / 5 \/ 5 4/5 ___ 5 ____ / 5 \/ 5 | 4/5 5 ____ / 5 \/ 5 / 5 \/ 5 | | | 4/5 5 ____ / 5 \/ 5 4/5 5 ____ / 5 \/ 5 4/5 ___ 5 ____ / 5 \/ 5 4/5 ___ 5 ____ / 5 \/ 5 | 4/5 5 ____ / 5 \/ 5 / 5 \/ 5 | | 4/5 5 ____ / 5 \/ 5 |
4/5 5 ____ | | 3 *\/ 11 * / - - ----- 3 *\/ 5 *\/ 11 * / - - ----- | 4/5 5 ____ 4/5 ___ 5 ____| | | 3 *\/ 11 * / - - ----- 3 *\/ 11 * / - + ----- 3 *\/ 5 *\/ 11 * / - + ----- 3 *\/ 5 *\/ 11 * / - - ----- | 4/5 5 ____ 3 *\/ 11 * / - - ----- * / - + ----- | | | 3 *\/ 11 * / - - ----- 3 *\/ 11 * / - + ----- 3 *\/ 5 *\/ 11 * / - - ----- 3 *\/ 5 *\/ 11 * / - + ----- | 4/5 5 ____ 3 *\/ 11 * / - - ----- * / - + ----- | | 4/5 5 ____ 4/5 ___ 5 ____ I*3 *\/ 11 * / - - ----- |
-3 *\/ 11 | | \/ 8 8 \/ 8 8 | 3 *\/ 11 3 *\/ 5 *\/ 11 | | | \/ 8 8 \/ 8 8 \/ 8 8 \/ 8 8 | 3 *\/ 11 \/ 8 8 \/ 8 8 | | | \/ 8 8 \/ 8 8 \/ 8 8 \/ 8 8 | 3 *\/ 11 \/ 8 8 \/ 8 8 | |3 *\/ 11 3 *\/ 5 *\/ 11 \/ 8 8 |
1*-------------*|I*|- ---------------------------- - ----------------------------------| + ----------- - -----------------|*|I*|- ---------------------------- - ---------------------------- - ---------------------------------- + ----------------------------------| + ----------- + ---------------------------------------------|*|I*|- ---------------------------- + ---------------------------- + ---------------------------------- + ----------------------------------| + ----------- - ---------------------------------------------|*|----------- + ----------------- + ------------------------------|
3 \ \ 6 6 / 12 12 / \ \ 12 12 12 12 / 12 3 / \ \ 12 12 12 12 / 12 3 / \ 12 12 3 / 1 ( − 11 5 ⋅ 3 4 5 3 ) ( − 11 5 ⋅ 3 4 5 5 12 + 11 5 ⋅ 3 4 5 12 + i ( − 11 5 ⋅ 3 4 5 5 5 8 − 5 8 6 − 11 5 ⋅ 3 4 5 5 8 − 5 8 6 ) ) ( 11 5 ⋅ 3 4 5 12 + 11 5 ⋅ 3 4 5 5 8 − 5 8 5 8 + 5 8 3 + i ( − 11 5 ⋅ 3 4 5 5 5 8 + 5 8 12 − 11 5 ⋅ 3 4 5 5 8 + 5 8 12 − 11 5 ⋅ 3 4 5 5 8 − 5 8 12 + 11 5 ⋅ 3 4 5 5 5 8 − 5 8 12 ) ) ( − 11 5 ⋅ 3 4 5 5 8 − 5 8 5 8 + 5 8 3 + 11 5 ⋅ 3 4 5 12 + i ( − 11 5 ⋅ 3 4 5 5 8 − 5 8 12 + 11 5 ⋅ 3 4 5 5 8 + 5 8 12 + 11 5 ⋅ 3 4 5 5 5 8 − 5 8 12 + 11 5 ⋅ 3 4 5 5 5 8 + 5 8 12 ) ) ( 11 5 ⋅ 3 4 5 12 + 11 5 ⋅ 3 4 5 5 12 + 11 5 ⋅ 3 4 5 i 5 8 − 5 8 3 ) 1 \left(- \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}}}{3}\right) \left(- \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{5}}{12} + \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}}}{12} + i \left(- \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{5} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{6} - \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{6}\right)\right) \left(\frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}}}{12} + \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{3} + i \left(- \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{5} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{12} - \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{12} - \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{12} + \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{5} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{12}\right)\right) \left(- \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{3} + \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}}}{12} + i \left(- \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{12} + \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{12} + \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{5} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{12} + \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{5} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{12}\right)\right) \left(\frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}}}{12} + \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} \sqrt{5}}{12} + \frac{\sqrt[5]{11} \cdot 3^{\frac{4}{5}} i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{3}\right) 1 ( − 3 5 11 ⋅ 3 5 4 ) − 12 5 11 ⋅ 3 5 4 5 + 12 5 11 ⋅ 3 5 4 + i − 6 5 11 ⋅ 3 5 4 5 8 5 − 8 5 − 6 5 11 ⋅ 3 5 4 8 5 − 8 5 12 5 11 ⋅ 3 5 4 + 3 5 11 ⋅ 3 5 4 8 5 − 8 5 8 5 + 8 5 + i − 12 5 11 ⋅ 3 5 4 5 8 5 + 8 5 − 12 5 11 ⋅ 3 5 4 8 5 + 8 5 − 12 5 11 ⋅ 3 5 4 8 5 − 8 5 + 12 5 11 ⋅ 3 5 4 5 8 5 − 8 5 − 3 5 11 ⋅ 3 5 4 8 5 − 8 5 8 5 + 8 5 + 12 5 11 ⋅ 3 5 4 + i − 12 5 11 ⋅ 3 5 4 8 5 − 8 5 + 12 5 11 ⋅ 3 5 4 8 5 + 8 5 + 12 5 11 ⋅ 3 5 4 5 8 5 − 8 5 + 12 5 11 ⋅ 3 5 4 5 8 5 + 8 5 12 5 11 ⋅ 3 5 4 + 12 5 11 ⋅ 3 5 4 5 + 3 5 11 ⋅ 3 5 4 i 8 5 − 8 5 _______________ _______________ ______________
/ ___ / ___ / ___
11 11*I*\/ 50 + 10*\/ 5 11*I*\/ 50 - 10*\/ 5 55*I*\/ 10 - 2*\/ 5
- -- - ----------------------- + ----------------------- + ----------------------
3 96 192 192 − 11 3 − 11 i 10 5 + 50 96 + 11 i 50 − 10 5 192 + 55 i 10 − 2 5 192 - \frac{11}{3} - \frac{11 i \sqrt{10 \sqrt{5} + 50}}{96} + \frac{11 i \sqrt{50 - 10 \sqrt{5}}}{192} + \frac{55 i \sqrt{10 - 2 \sqrt{5}}}{192} − 3 11 − 96 11 i 10 5 + 50 + 192 11 i 50 − 10 5 + 192 55 i 10 − 2 5 x1 = -0.400715969233604 - 1.23327694159349*i x2 = -0.400715969233604 + 1.23327694159349*i x3 = 1.04908802728843 - 0.762207067446296*i x5 = 1.04908802728843 + 0.762207067446296*i