7x²+8x+1=0 (уравнение) Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: 7x²+8x+1=0
Решение
Подробное решение
Это уравнение видаa*x^2 + b*x + c = 0 Квадратное уравнение можно решить с помощью дискриминанта. Корни квадратного уравнения:x 1 = D − b 2 a x_{1} = \frac{\sqrt{D} - b}{2 a} x 1 = 2 a D − b x 2 = − D − b 2 a x_{2} = \frac{- \sqrt{D} - b}{2 a} x 2 = 2 a − D − b где D = b^2 - 4*a*c - это дискриминант. Т.к.a = 7 a = 7 a = 7 b = 8 b = 8 b = 8 c = 1 c = 1 c = 1 , тоD = b^2 - 4 * a * c = (8)^2 - 4 * (7) * (1) = 36 Т.к. D > 0, то уравнение имеет два корня.x1 = (-b + sqrt(D)) / (2*a) x2 = (-b - sqrt(D)) / (2*a) илиx 1 = − 1 7 x_{1} = - \frac{1}{7} x 1 = − 7 1 Упростить x 2 = − 1 x_{2} = -1 x 2 = − 1 Упростить
График
-15.0 -12.5 -10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0 12.5 -1000 1000
x 2 = − 1 7 x_{2} = - \frac{1}{7} x 2 = − 7 1
Сумма и произведение корней
[src] ( − 1 + 0 ) − 1 7 \left(-1 + 0\right) - \frac{1}{7} ( − 1 + 0 ) − 7 1 1 ( − 1 ) ( − 1 7 ) 1 \left(-1\right) \left(- \frac{1}{7}\right) 1 ( − 1 ) ( − 7 1 )
Теорема Виета
перепишем уравнение7 x 2 + 8 x + 1 = 0 7 x^{2} + 8 x + 1 = 0 7 x 2 + 8 x + 1 = 0 изa x 2 + b x + c = 0 a x^{2} + b x + c = 0 a x 2 + b x + c = 0 как приведённое квадратное уравнениеx 2 + b x a + c a = 0 x^{2} + \frac{b x}{a} + \frac{c}{a} = 0 x 2 + a b x + a c = 0 x 2 + 8 x 7 + 1 7 = 0 x^{2} + \frac{8 x}{7} + \frac{1}{7} = 0 x 2 + 7 8 x + 7 1 = 0 p x + q + x 2 = 0 p x + q + x^{2} = 0 p x + q + x 2 = 0 гдеp = b a p = \frac{b}{a} p = a b p = 8 7 p = \frac{8}{7} p = 7 8 q = c a q = \frac{c}{a} q = a c q = 1 7 q = \frac{1}{7} q = 7 1 Формулы Виетаx 1 + x 2 = − p x_{1} + x_{2} = - p x 1 + x 2 = − p x 1 x 2 = q x_{1} x_{2} = q x 1 x 2 = q x 1 + x 2 = − 8 7 x_{1} + x_{2} = - \frac{8}{7} x 1 + x 2 = − 7 8 x 1 x 2 = 1 7 x_{1} x_{2} = \frac{1}{7} x 1 x 2 = 7 1