Решите уравнение 7tg^2x+4tgx=0 (7tg в квадрате х плюс 4tg х равно 0) - Найдите корень уравнения подробно по-шагам. [Есть ответ!]

7tg^2x+4tgx=0 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: 7tg^2x+4tgx=0

    Решение

    Вы ввели [src]
         2                  
    7*tan (x) + 4*tan(x) = 0
    $$7 \tan^{2}{\left(x \right)} + 4 \tan{\left(x \right)} = 0$$
    Подробное решение
    Дано уравнение
    $$7 \tan^{2}{\left(x \right)} + 4 \tan{\left(x \right)} = 0$$
    преобразуем
    $$\left(7 \tan{\left(x \right)} + 4\right) \tan{\left(x \right)} = 0$$
    $$\left(7 \tan^{2}{\left(x \right)} + 4 \tan{\left(x \right)}\right) + 0 = 0$$
    Сделаем замену
    $$w = \tan{\left(x \right)}$$
    Это уравнение вида
    a*w^2 + b*w + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    $$w_{1} = \frac{\sqrt{D} - b}{2 a}$$
    $$w_{2} = \frac{- \sqrt{D} - b}{2 a}$$
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    $$a = 7$$
    $$b = 4$$
    $$c = 0$$
    , то
    D = b^2 - 4 * a * c = 

    (4)^2 - 4 * (7) * (0) = 16

    Т.к. D > 0, то уравнение имеет два корня.
    w1 = (-b + sqrt(D)) / (2*a)

    w2 = (-b - sqrt(D)) / (2*a)

    или
    $$w_{1} = 0$$
    Упростить
    $$w_{2} = - \frac{4}{7}$$
    Упростить
    делаем обратную замену
    $$\tan{\left(x \right)} = w$$
    Дано уравнение
    $$\tan{\left(x \right)} = w$$
    - это простейшее тригонометрическое ур-ние
    Это ур-ние преобразуется в
    $$x = \pi n + \operatorname{atan}{\left(w \right)}$$
    Или
    $$x = \pi n + \operatorname{atan}{\left(w \right)}$$
    , где n - любое целое число
    подставляем w:
    $$x_{1} = \pi n + \operatorname{atan}{\left(w_{1} \right)}$$
    $$x_{1} = \pi n + \operatorname{atan}{\left(0 \right)}$$
    $$x_{1} = \pi n$$
    $$x_{2} = \pi n + \operatorname{atan}{\left(w_{2} \right)}$$
    $$x_{2} = \pi n + \operatorname{atan}{\left(- \frac{4}{7} \right)}$$
    $$x_{2} = \pi n - \operatorname{atan}{\left(\frac{4}{7} \right)}$$
    График
    Быстрый ответ [src]
    x1 = 0
    $$x_{1} = 0$$
    x2 = -atan(4/7)
    $$x_{2} = - \operatorname{atan}{\left(\frac{4}{7} \right)}$$
    Сумма и произведение корней [src]
    сумма
    0 + 0 - atan(4/7)
    $$- \operatorname{atan}{\left(\frac{4}{7} \right)} + \left(0 + 0\right)$$
    =
    -atan(4/7)
    $$- \operatorname{atan}{\left(\frac{4}{7} \right)}$$
    произведение
    1*0*-atan(4/7)
    $$1 \cdot 0 \left(- \operatorname{atan}{\left(\frac{4}{7} \right)}\right)$$
    =
    0
    $$0$$
    Численный ответ [src]
    x1 = 18.3304098072922
    x2 = -97.3893722612836
    x3 = -72.2566310325652
    x4 = 31.4159265358979
    x5 = -34.5575191894877
    x6 = 50.2654824574367
    x7 = 12.0472245001126
    x8 = 30.8967804216514
    x9 = 62.8318530717959
    x10 = -69.1150383789755
    x11 = 46.6047436896004
    x12 = 43.4631510360106
    x13 = -28.2743338823081
    x14 = -13.0855167286057
    x15 = 34.0383730752412
    x16 = -57.0678138788628
    x17 = -65.9734457253857
    x18 = -100.530964914873
    x19 = 87.9645943005142
    x20 = 8.90563184652286
    x21 = 91.106186954104
    x22 = -91.106186954104
    x23 = -12.5663706143592
    x24 = -37.6991118430775
    x25 = -21.9911485751286
    x26 = -41.3598506109138
    x27 = 24.6135951144718
    x28 = 59.6902604182061
    x29 = 78.0206702254983
    x30 = 74.8790775719085
    x31 = 59.1711143039595
    x32 = -6.28318530717959
    x33 = 28.2743338823081
    x34 = -62.8318530717959
    x35 = -15.707963267949
    x36 = 100.011818800627
    x37 = 52.88792899678
    x38 = 65.9734457253857
    x39 = -94.2477796076938
    x40 = -3.66073876783632
    x41 = 81.1622628790881
    x42 = -19.3687020357853
    x43 = -56.5486677646163
    x44 = -50.2654824574367
    x45 = -40.8407044966673
    x46 = -75.9173698004016
    x47 = -31.4159265358979
    x48 = 2.62244653934327
    x49 = 3.14159265358979
    x50 = -84.8230016469244
    x51 = -78.5398163397448
    x52 = -35.0766653037342
    x53 = 72.2566310325652
    x54 = 0.0
    x55 = 62.3127069575493
    x56 = 43.9822971502571
    x57 = -75.398223686155
    x58 = 53.4070751110265
    x59 = 21.9911485751286
    x60 = -43.9822971502571
    x61 = -18.8495559215388
    x62 = 40.8407044966673
    x63 = 12.5663706143592
    x64 = -3.14159265358979
    x65 = 75.398223686155
    x66 = 84.8230016469244
    x67 = 56.0295216503698
    x68 = -85.3421477611709
    x69 = 18.8495559215388
    x70 = 40.3215583824208
    x71 = -63.3509991860424
    x72 = 25.1327412287183
    x73 = 6.28318530717959
    x74 = 47.1238898038469
    x75 = -47.1238898038469
    x76 = -25.1327412287183
    x77 = -9.42477796076938
    x78 = 81.6814089933346
    x79 = -31.9350726501445
    x80 = -69.634184493222
    x81 = 90.5870408398575
    x82 = -59.6902604182061
    x83 = -97.9085183755301
    x84 = 37.6991118430775
    x85 = 9.42477796076938
    x86 = -53.4070751110265
    x87 = -9.9439240750159
    x88 = -79.0589624539914
    x89 = -91.6253330683505
    x90 = -53.926221225273
    x91 = 68.5958922647289
    x92 = -87.9645943005142
    x93 = -25.6518873429649
    x94 = 97.3893722612836
    x95 = -47.6430359180934
    x96 = 15.707963267949
    x97 = 96.8702261470371
    x98 = 84.3038555326779
    x99 = 69.1150383789755
    x100 = 94.2477796076938
    x101 = -81.6814089933346
    График
    7tg^2x+4tgx=0 (уравнение) /media/krcore-image-pods/hash/equation/f/61/a725a80bb698cb050523034848f4c.png