7х=4х² (уравнение) Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: 7х=4х²
Решение
Подробное решение
Перенесём правую часть уравнения в левую часть уравнения со знаком минус. Уравнение превратится из7 x = 4 x 2 7 x = 4 x^{2} 7 x = 4 x 2 в− 4 x 2 + 7 x = 0 - 4 x^{2} + 7 x = 0 − 4 x 2 + 7 x = 0 Это уравнение видаa*x^2 + b*x + c = 0 Квадратное уравнение можно решить с помощью дискриминанта. Корни квадратного уравнения:x 1 = D − b 2 a x_{1} = \frac{\sqrt{D} - b}{2 a} x 1 = 2 a D − b x 2 = − D − b 2 a x_{2} = \frac{- \sqrt{D} - b}{2 a} x 2 = 2 a − D − b где D = b^2 - 4*a*c - это дискриминант. Т.к.a = − 4 a = -4 a = − 4 b = 7 b = 7 b = 7 c = 0 c = 0 c = 0 , тоD = b^2 - 4 * a * c = (7)^2 - 4 * (-4) * (0) = 49 Т.к. D > 0, то уравнение имеет два корня.x1 = (-b + sqrt(D)) / (2*a) x2 = (-b - sqrt(D)) / (2*a) илиx 1 = 0 x_{1} = 0 x 1 = 0 Упростить x 2 = 7 4 x_{2} = \frac{7}{4} x 2 = 4 7 Упростить
График
0 2 4 6 8 -8 -6 -4 -2 10 -10 -500 1000
x 2 = 7 4 x_{2} = \frac{7}{4} x 2 = 4 7
Сумма и произведение корней
[src] ( 0 + 0 ) + 7 4 \left(0 + 0\right) + \frac{7}{4} ( 0 + 0 ) + 4 7 1 ⋅ 0 ⋅ 7 4 1 \cdot 0 \cdot \frac{7}{4} 1 ⋅ 0 ⋅ 4 7
Теорема Виета
перепишем уравнение7 x = 4 x 2 7 x = 4 x^{2} 7 x = 4 x 2 изa x 2 + b x + c = 0 a x^{2} + b x + c = 0 a x 2 + b x + c = 0 как приведённое квадратное уравнениеx 2 + b x a + c a = 0 x^{2} + \frac{b x}{a} + \frac{c}{a} = 0 x 2 + a b x + a c = 0 x 2 − 7 x 4 = 0 x^{2} - \frac{7 x}{4} = 0 x 2 − 4 7 x = 0 p x + q + x 2 = 0 p x + q + x^{2} = 0 p x + q + x 2 = 0 гдеp = b a p = \frac{b}{a} p = a b p = − 7 4 p = - \frac{7}{4} p = − 4 7 q = c a q = \frac{c}{a} q = a c q = 0 q = 0 q = 0 Формулы Виетаx 1 + x 2 = − p x_{1} + x_{2} = - p x 1 + x 2 = − p x 1 x 2 = q x_{1} x_{2} = q x 1 x 2 = q x 1 + x 2 = 7 4 x_{1} + x_{2} = \frac{7}{4} x 1 + x 2 = 4 7 x 1 x 2 = 0 x_{1} x_{2} = 0 x 1 x 2 = 0