8х²+5х_4=0 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: 8х²+5х_4=0

    Решение

    Подробное решение
    Это уравнение вида
    a*x^2 + b*x + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    x1=Db2ax_{1} = \frac{\sqrt{D} - b}{2 a}
    x2=Db2ax_{2} = \frac{- \sqrt{D} - b}{2 a}
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    a=8a = 8
    b=0b = 0
    c=5x4c = 5 x_{4}
    , то
    D = b^2 - 4 * a * c = 

    (0)^2 - 4 * (8) * (5*x_4) = -160*x_4

    Уравнение имеет два корня.
    x1 = (-b + sqrt(D)) / (2*a)

    x2 = (-b - sqrt(D)) / (2*a)

    или
    x1=10x44x_{1} = \frac{\sqrt{10} \sqrt{- x_{4}}}{4}
    Упростить
    x2=10x44x_{2} = - \frac{\sqrt{10} \sqrt{- x_{4}}}{4}
    Упростить
    График
    Быстрый ответ [src]
                     _____________________                                              _____________________                               
             ____ 4 /   2          2          /atan2(-im(x_4), -re(x_4))\       ____ 4 /   2          2          /atan2(-im(x_4), -re(x_4))\
           \/ 10 *\/  im (x_4) + re (x_4) *cos|-------------------------|   I*\/ 10 *\/  im (x_4) + re (x_4) *sin|-------------------------|
                                              \            2            /                                        \            2            /
    x1 = - -------------------------------------------------------------- - ----------------------------------------------------------------
                                         4                                                                 4                                
    x1=10i(re(x4))2+(im(x4))24sin(atan2(im(x4),re(x4))2)410(re(x4))2+(im(x4))24cos(atan2(im(x4),re(x4))2)4x_{1} = - \frac{\sqrt{10} i \sqrt[4]{\left(\operatorname{re}{\left(x_{4}\right)}\right)^{2} + \left(\operatorname{im}{\left(x_{4}\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(- \operatorname{im}{\left(x_{4}\right)},- \operatorname{re}{\left(x_{4}\right)} \right)}}{2} \right)}}{4} - \frac{\sqrt{10} \sqrt[4]{\left(\operatorname{re}{\left(x_{4}\right)}\right)^{2} + \left(\operatorname{im}{\left(x_{4}\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(- \operatorname{im}{\left(x_{4}\right)},- \operatorname{re}{\left(x_{4}\right)} \right)}}{2} \right)}}{4}
                   _____________________                                              _____________________                               
           ____ 4 /   2          2          /atan2(-im(x_4), -re(x_4))\       ____ 4 /   2          2          /atan2(-im(x_4), -re(x_4))\
         \/ 10 *\/  im (x_4) + re (x_4) *cos|-------------------------|   I*\/ 10 *\/  im (x_4) + re (x_4) *sin|-------------------------|
                                            \            2            /                                        \            2            /
    x2 = -------------------------------------------------------------- + ----------------------------------------------------------------
                                       4                                                                 4                                
    x2=10i(re(x4))2+(im(x4))24sin(atan2(im(x4),re(x4))2)4+10(re(x4))2+(im(x4))24cos(atan2(im(x4),re(x4))2)4x_{2} = \frac{\sqrt{10} i \sqrt[4]{\left(\operatorname{re}{\left(x_{4}\right)}\right)^{2} + \left(\operatorname{im}{\left(x_{4}\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(- \operatorname{im}{\left(x_{4}\right)},- \operatorname{re}{\left(x_{4}\right)} \right)}}{2} \right)}}{4} + \frac{\sqrt{10} \sqrt[4]{\left(\operatorname{re}{\left(x_{4}\right)}\right)^{2} + \left(\operatorname{im}{\left(x_{4}\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(- \operatorname{im}{\left(x_{4}\right)},- \operatorname{re}{\left(x_{4}\right)} \right)}}{2} \right)}}{4}
    Сумма и произведение корней [src]
    сумма
                _____________________                                              _____________________                                            _____________________                                              _____________________                               
        ____ 4 /   2          2          /atan2(-im(x_4), -re(x_4))\       ____ 4 /   2          2          /atan2(-im(x_4), -re(x_4))\     ____ 4 /   2          2          /atan2(-im(x_4), -re(x_4))\       ____ 4 /   2          2          /atan2(-im(x_4), -re(x_4))\
      \/ 10 *\/  im (x_4) + re (x_4) *cos|-------------------------|   I*\/ 10 *\/  im (x_4) + re (x_4) *sin|-------------------------|   \/ 10 *\/  im (x_4) + re (x_4) *cos|-------------------------|   I*\/ 10 *\/  im (x_4) + re (x_4) *sin|-------------------------|
                                         \            2            /                                        \            2            /                                      \            2            /                                        \            2            /
    - -------------------------------------------------------------- - ---------------------------------------------------------------- + -------------------------------------------------------------- + ----------------------------------------------------------------
                                    4                                                                 4                                                                 4                                                                 4                                
    (10i(re(x4))2+(im(x4))24sin(atan2(im(x4),re(x4))2)410(re(x4))2+(im(x4))24cos(atan2(im(x4),re(x4))2)4)+(10i(re(x4))2+(im(x4))24sin(atan2(im(x4),re(x4))2)4+10(re(x4))2+(im(x4))24cos(atan2(im(x4),re(x4))2)4)\left(- \frac{\sqrt{10} i \sqrt[4]{\left(\operatorname{re}{\left(x_{4}\right)}\right)^{2} + \left(\operatorname{im}{\left(x_{4}\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(- \operatorname{im}{\left(x_{4}\right)},- \operatorname{re}{\left(x_{4}\right)} \right)}}{2} \right)}}{4} - \frac{\sqrt{10} \sqrt[4]{\left(\operatorname{re}{\left(x_{4}\right)}\right)^{2} + \left(\operatorname{im}{\left(x_{4}\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(- \operatorname{im}{\left(x_{4}\right)},- \operatorname{re}{\left(x_{4}\right)} \right)}}{2} \right)}}{4}\right) + \left(\frac{\sqrt{10} i \sqrt[4]{\left(\operatorname{re}{\left(x_{4}\right)}\right)^{2} + \left(\operatorname{im}{\left(x_{4}\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(- \operatorname{im}{\left(x_{4}\right)},- \operatorname{re}{\left(x_{4}\right)} \right)}}{2} \right)}}{4} + \frac{\sqrt{10} \sqrt[4]{\left(\operatorname{re}{\left(x_{4}\right)}\right)^{2} + \left(\operatorname{im}{\left(x_{4}\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(- \operatorname{im}{\left(x_{4}\right)},- \operatorname{re}{\left(x_{4}\right)} \right)}}{2} \right)}}{4}\right)
    =
    0
    00
    произведение
    /            _____________________                                              _____________________                               \ /          _____________________                                              _____________________                               \
    |    ____ 4 /   2          2          /atan2(-im(x_4), -re(x_4))\       ____ 4 /   2          2          /atan2(-im(x_4), -re(x_4))\| |  ____ 4 /   2          2          /atan2(-im(x_4), -re(x_4))\       ____ 4 /   2          2          /atan2(-im(x_4), -re(x_4))\|
    |  \/ 10 *\/  im (x_4) + re (x_4) *cos|-------------------------|   I*\/ 10 *\/  im (x_4) + re (x_4) *sin|-------------------------|| |\/ 10 *\/  im (x_4) + re (x_4) *cos|-------------------------|   I*\/ 10 *\/  im (x_4) + re (x_4) *sin|-------------------------||
    |                                     \            2            /                                        \            2            /| |                                   \            2            /                                        \            2            /|
    |- -------------------------------------------------------------- - ----------------------------------------------------------------|*|-------------------------------------------------------------- + ----------------------------------------------------------------|
    \                                4                                                                 4                                / \                              4                                                                 4                                /
    (10i(re(x4))2+(im(x4))24sin(atan2(im(x4),re(x4))2)410(re(x4))2+(im(x4))24cos(atan2(im(x4),re(x4))2)4)(10i(re(x4))2+(im(x4))24sin(atan2(im(x4),re(x4))2)4+10(re(x4))2+(im(x4))24cos(atan2(im(x4),re(x4))2)4)\left(- \frac{\sqrt{10} i \sqrt[4]{\left(\operatorname{re}{\left(x_{4}\right)}\right)^{2} + \left(\operatorname{im}{\left(x_{4}\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(- \operatorname{im}{\left(x_{4}\right)},- \operatorname{re}{\left(x_{4}\right)} \right)}}{2} \right)}}{4} - \frac{\sqrt{10} \sqrt[4]{\left(\operatorname{re}{\left(x_{4}\right)}\right)^{2} + \left(\operatorname{im}{\left(x_{4}\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(- \operatorname{im}{\left(x_{4}\right)},- \operatorname{re}{\left(x_{4}\right)} \right)}}{2} \right)}}{4}\right) \left(\frac{\sqrt{10} i \sqrt[4]{\left(\operatorname{re}{\left(x_{4}\right)}\right)^{2} + \left(\operatorname{im}{\left(x_{4}\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(- \operatorname{im}{\left(x_{4}\right)},- \operatorname{re}{\left(x_{4}\right)} \right)}}{2} \right)}}{4} + \frac{\sqrt{10} \sqrt[4]{\left(\operatorname{re}{\left(x_{4}\right)}\right)^{2} + \left(\operatorname{im}{\left(x_{4}\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(- \operatorname{im}{\left(x_{4}\right)},- \operatorname{re}{\left(x_{4}\right)} \right)}}{2} \right)}}{4}\right)
    =
          _____________________                             
         /   2          2        I*atan2(-im(x_4), -re(x_4))
    -5*\/  im (x_4) + re (x_4) *e                           
    --------------------------------------------------------
                               8                            
    5(re(x4))2+(im(x4))2eiatan2(im(x4),re(x4))8- \frac{5 \sqrt{\left(\operatorname{re}{\left(x_{4}\right)}\right)^{2} + \left(\operatorname{im}{\left(x_{4}\right)}\right)^{2}} e^{i \operatorname{atan_{2}}{\left(- \operatorname{im}{\left(x_{4}\right)},- \operatorname{re}{\left(x_{4}\right)} \right)}}}{8}
    Теорема Виета
    перепишем уравнение
    8x2+5x4=08 x^{2} + 5 x_{4} = 0
    из
    ax2+bx+c=0a x^{2} + b x + c = 0
    как приведённое квадратное уравнение
    x2+bxa+ca=0x^{2} + \frac{b x}{a} + \frac{c}{a} = 0
    x2+5x48=0x^{2} + \frac{5 x_{4}}{8} = 0
    px+q+x2=0p x + q + x^{2} = 0
    где
    p=bap = \frac{b}{a}
    p=0p = 0
    q=caq = \frac{c}{a}
    q=5x48q = \frac{5 x_{4}}{8}
    Формулы Виета
    x1+x2=px_{1} + x_{2} = - p
    x1x2=qx_{1} x_{2} = q
    x1+x2=0x_{1} + x_{2} = 0
    x1x2=5x48x_{1} x_{2} = \frac{5 x_{4}}{8}