9x^2-16=0 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: 9x^2-16=0

    Решение

    Вы ввели [src]
       2         
    9*x  - 16 = 0
    9x216=09 x^{2} - 16 = 0
    Подробное решение
    Это уравнение вида
    a*x^2 + b*x + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    x1=Db2ax_{1} = \frac{\sqrt{D} - b}{2 a}
    x2=Db2ax_{2} = \frac{- \sqrt{D} - b}{2 a}
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    a=9a = 9
    b=0b = 0
    c=16c = -16
    , то
    D = b^2 - 4 * a * c = 

    (0)^2 - 4 * (9) * (-16) = 576

    Т.к. D > 0, то уравнение имеет два корня.
    x1 = (-b + sqrt(D)) / (2*a)

    x2 = (-b - sqrt(D)) / (2*a)

    или
    x1=43x_{1} = \frac{4}{3}
    Упростить
    x2=43x_{2} = - \frac{4}{3}
    Упростить
    График
    05-15-10-510152000-1000
    Быстрый ответ [src]
    x1 = -4/3
    x1=43x_{1} = - \frac{4}{3}
    x2 = 4/3
    x2=43x_{2} = \frac{4}{3}
    Сумма и произведение корней [src]
    сумма
    0 - 4/3 + 4/3
    (43+0)+43\left(- \frac{4}{3} + 0\right) + \frac{4}{3}
    =
    0
    00
    произведение
    1*-4/3*4/3
    1(43)431 \left(- \frac{4}{3}\right) \frac{4}{3}
    =
    -16/9
    169- \frac{16}{9}
    Теорема Виета
    перепишем уравнение
    9x216=09 x^{2} - 16 = 0
    из
    ax2+bx+c=0a x^{2} + b x + c = 0
    как приведённое квадратное уравнение
    x2+bxa+ca=0x^{2} + \frac{b x}{a} + \frac{c}{a} = 0
    x2169=0x^{2} - \frac{16}{9} = 0
    px+q+x2=0p x + q + x^{2} = 0
    где
    p=bap = \frac{b}{a}
    p=0p = 0
    q=caq = \frac{c}{a}
    q=169q = - \frac{16}{9}
    Формулы Виета
    x1+x2=px_{1} + x_{2} = - p
    x1x2=qx_{1} x_{2} = q
    x1+x2=0x_{1} + x_{2} = 0
    x1x2=169x_{1} x_{2} = - \frac{16}{9}
    Численный ответ [src]
    x1 = -1.33333333333333
    x2 = 1.33333333333333
    График
    9x^2-16=0 (уравнение) /media/krcore-image-pods/hash/equation/e/39/43275718eb3a8987a073e88f9d51d.png