9х²-21х+6=0 (уравнение) Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: 9х²-21х+6=0
Решение
Подробное решение
Это уравнение видаa*x^2 + b*x + c = 0 Квадратное уравнение можно решить с помощью дискриминанта. Корни квадратного уравнения:x 1 = D − b 2 a x_{1} = \frac{\sqrt{D} - b}{2 a} x 1 = 2 a D − b x 2 = − D − b 2 a x_{2} = \frac{- \sqrt{D} - b}{2 a} x 2 = 2 a − D − b где D = b^2 - 4*a*c - это дискриминант. Т.к.a = 9 a = 9 a = 9 b = − 21 b = -21 b = − 21 c = 6 c = 6 c = 6 , тоD = b^2 - 4 * a * c = (-21)^2 - 4 * (9) * (6) = 225 Т.к. D > 0, то уравнение имеет два корня.x1 = (-b + sqrt(D)) / (2*a) x2 = (-b - sqrt(D)) / (2*a) илиx 1 = 2 x_{1} = 2 x 1 = 2 Упростить x 2 = 1 3 x_{2} = \frac{1}{3} x 2 = 3 1 Упростить x 1 = 1 3 x_{1} = \frac{1}{3} x 1 = 3 1
Сумма и произведение корней
[src]
Теорема Виета
перепишем уравнение( 9 x 2 − 21 x ) + 6 = 0 \left(9 x^{2} - 21 x\right) + 6 = 0 ( 9 x 2 − 21 x ) + 6 = 0 изa x 2 + b x + c = 0 a x^{2} + b x + c = 0 a x 2 + b x + c = 0 как приведённое квадратное уравнениеx 2 + b x a + c a = 0 x^{2} + \frac{b x}{a} + \frac{c}{a} = 0 x 2 + a b x + a c = 0 x 2 − 7 x 3 + 2 3 = 0 x^{2} - \frac{7 x}{3} + \frac{2}{3} = 0 x 2 − 3 7 x + 3 2 = 0 p x + q + x 2 = 0 p x + q + x^{2} = 0 p x + q + x 2 = 0 гдеp = b a p = \frac{b}{a} p = a b p = − 7 3 p = - \frac{7}{3} p = − 3 7 q = c a q = \frac{c}{a} q = a c q = 2 3 q = \frac{2}{3} q = 3 2 Формулы Виетаx 1 + x 2 = − p x_{1} + x_{2} = - p x 1 + x 2 = − p x 1 x 2 = q x_{1} x_{2} = q x 1 x 2 = q x 1 + x 2 = 7 3 x_{1} + x_{2} = \frac{7}{3} x 1 + x 2 = 3 7 x 1 x 2 = 2 3 x_{1} x_{2} = \frac{2}{3} x 1 x 2 = 3 2