/ (-1 + re(a))*im(b) (1 + re(b))*im(a) \ (1 + re(b))*(-1 + re(a)) im(a)*im(b)
x1 = I*|---------------------- - ----------------------| + ------------------------ + ----------------------
| 2 2 2 2 | 2 2 2 2
\(-1 + re(a)) + im (a) (-1 + re(a)) + im (a)/ (-1 + re(a)) + im (a) (-1 + re(a)) + im (a)
$$x_{1} = i \left(\frac{\left(\operatorname{re}{\left(a\right)} - 1\right) \operatorname{im}{\left(b\right)}}{\left(\operatorname{re}{\left(a\right)} - 1\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} - \frac{\left(\operatorname{re}{\left(b\right)} + 1\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)} - 1\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}\right) + \frac{\left(\operatorname{re}{\left(a\right)} - 1\right) \left(\operatorname{re}{\left(b\right)} + 1\right)}{\left(\operatorname{re}{\left(a\right)} - 1\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} + \frac{\operatorname{im}{\left(a\right)} \operatorname{im}{\left(b\right)}}{\left(\operatorname{re}{\left(a\right)} - 1\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}$$
Сумма и произведение корней
[src] / (-1 + re(a))*im(b) (1 + re(b))*im(a) \ (1 + re(b))*(-1 + re(a)) im(a)*im(b)
I*|---------------------- - ----------------------| + ------------------------ + ----------------------
| 2 2 2 2 | 2 2 2 2
\(-1 + re(a)) + im (a) (-1 + re(a)) + im (a)/ (-1 + re(a)) + im (a) (-1 + re(a)) + im (a)
$$i \left(\frac{\left(\operatorname{re}{\left(a\right)} - 1\right) \operatorname{im}{\left(b\right)}}{\left(\operatorname{re}{\left(a\right)} - 1\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} - \frac{\left(\operatorname{re}{\left(b\right)} + 1\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)} - 1\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}\right) + \frac{\left(\operatorname{re}{\left(a\right)} - 1\right) \left(\operatorname{re}{\left(b\right)} + 1\right)}{\left(\operatorname{re}{\left(a\right)} - 1\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} + \frac{\operatorname{im}{\left(a\right)} \operatorname{im}{\left(b\right)}}{\left(\operatorname{re}{\left(a\right)} - 1\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}$$
/ (-1 + re(a))*im(b) (1 + re(b))*im(a) \ (1 + re(b))*(-1 + re(a)) im(a)*im(b)
I*|---------------------- - ----------------------| + ------------------------ + ----------------------
| 2 2 2 2 | 2 2 2 2
\(-1 + re(a)) + im (a) (-1 + re(a)) + im (a)/ (-1 + re(a)) + im (a) (-1 + re(a)) + im (a)
$$i \left(\frac{\left(\operatorname{re}{\left(a\right)} - 1\right) \operatorname{im}{\left(b\right)}}{\left(\operatorname{re}{\left(a\right)} - 1\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} - \frac{\left(\operatorname{re}{\left(b\right)} + 1\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)} - 1\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}\right) + \frac{\left(\operatorname{re}{\left(a\right)} - 1\right) \left(\operatorname{re}{\left(b\right)} + 1\right)}{\left(\operatorname{re}{\left(a\right)} - 1\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} + \frac{\operatorname{im}{\left(a\right)} \operatorname{im}{\left(b\right)}}{\left(\operatorname{re}{\left(a\right)} - 1\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}$$
/ (-1 + re(a))*im(b) (1 + re(b))*im(a) \ (1 + re(b))*(-1 + re(a)) im(a)*im(b)
I*|---------------------- - ----------------------| + ------------------------ + ----------------------
| 2 2 2 2 | 2 2 2 2
\(-1 + re(a)) + im (a) (-1 + re(a)) + im (a)/ (-1 + re(a)) + im (a) (-1 + re(a)) + im (a)
$$i \left(\frac{\left(\operatorname{re}{\left(a\right)} - 1\right) \operatorname{im}{\left(b\right)}}{\left(\operatorname{re}{\left(a\right)} - 1\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} - \frac{\left(\operatorname{re}{\left(b\right)} + 1\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)} - 1\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}\right) + \frac{\left(\operatorname{re}{\left(a\right)} - 1\right) \left(\operatorname{re}{\left(b\right)} + 1\right)}{\left(\operatorname{re}{\left(a\right)} - 1\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} + \frac{\operatorname{im}{\left(a\right)} \operatorname{im}{\left(b\right)}}{\left(\operatorname{re}{\left(a\right)} - 1\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}$$
I*((-1 + re(a))*im(b) - (1 + re(b))*im(a)) + (1 + re(b))*(-1 + re(a)) + im(a)*im(b)
-----------------------------------------------------------------------------------
2 2
(-1 + re(a)) + im (a)
$$\frac{i \left(\left(\operatorname{re}{\left(a\right)} - 1\right) \operatorname{im}{\left(b\right)} - \left(\operatorname{re}{\left(b\right)} + 1\right) \operatorname{im}{\left(a\right)}\right) + \left(\operatorname{re}{\left(a\right)} - 1\right) \left(\operatorname{re}{\left(b\right)} + 1\right) + \operatorname{im}{\left(a\right)} \operatorname{im}{\left(b\right)}}{\left(\operatorname{re}{\left(a\right)} - 1\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}$$
Решение параметрического уравнения
Дано уравнение с параметром:
$$a x - b = x + 1$$
Коэффициент при x равен
$$a - 1$$
тогда возможные случаи для a :
$$a < 1$$
$$a = 1$$
Рассмотри все случаи подробнее:
При
$$a < 1$$
уравнение будет
$$- b - x - 1 = 0$$
его решение
$$x = - b - 1$$
При
$$a = 1$$
уравнение будет
$$- b - 1 = 0$$
его решение