Решите уравнение ax2+bx+c=0 (a х 2 плюс b х плюс c равно 0) - Найдите корень уравнения подробно по-шагам. [Есть ответ!]

ax2+bx+c=0 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: ax2+bx+c=0

    Решение

    Вы ввели [src]
       2              
    a*x  + b*x + c = 0
    $$c + \left(a x^{2} + b x\right) = 0$$
    Подробное решение
    Это уравнение вида
    a*x^2 + b*x + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    $$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
    $$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    True

    True

    True

    , то
    D = b^2 - 4 * a * c = 

    (b)^2 - 4 * (a) * (c) = b^2 - 4*a*c

    Уравнение имеет два корня.
    x1 = (-b + sqrt(D)) / (2*a)

    x2 = (-b - sqrt(D)) / (2*a)

    или
    $$x_{1} = \frac{- b + \sqrt{- 4 a c + b^{2}}}{2 a}$$
    $$x_{2} = \frac{- b - \sqrt{- 4 a c + b^{2}}}{2 a}$$
    График
    Быстрый ответ [src]
           //             ________________________________________________________________                                                                    \         /             ________________________________________________________________                                                                    \      \   /             ________________________________________________________________                                                                    \         /             ________________________________________________________________                                                                    \      
           ||            /                                                              2     /     /                              2        2               \\|         |            /                                                              2     /     /                              2        2               \\|      |   |            /                                                              2     /     /                              2        2               \\|         |            /                                                              2     /     /                              2        2               \\|      
           ||         4 /                              2   /  2        2               \      |atan2\-4*im(a*c) + 2*im(b)*re(b), re (b) - im (b) - 4*re(a*c)/||         |         4 /                              2   /  2        2               \      |atan2\-4*im(a*c) + 2*im(b)*re(b), re (b) - im (b) - 4*re(a*c)/||      |   |         4 /                              2   /  2        2               \      |atan2\-4*im(a*c) + 2*im(b)*re(b), re (b) - im (b) - 4*re(a*c)/||         |         4 /                              2   /  2        2               \      |atan2\-4*im(a*c) + 2*im(b)*re(b), re (b) - im (b) - 4*re(a*c)/||      
           ||-im(b) + \/   (-4*im(a*c) + 2*im(b)*re(b))  + \re (b) - im (b) - 4*re(a*c)/  *sin|--------------------------------------------------------------||*re(a)   |-re(b) + \/   (-4*im(a*c) + 2*im(b)*re(b))  + \re (b) - im (b) - 4*re(a*c)/  *cos|--------------------------------------------------------------||*im(a)|   |-im(b) + \/   (-4*im(a*c) + 2*im(b)*re(b))  + \re (b) - im (b) - 4*re(a*c)/  *sin|--------------------------------------------------------------||*im(a)   |-re(b) + \/   (-4*im(a*c) + 2*im(b)*re(b))  + \re (b) - im (b) - 4*re(a*c)/  *cos|--------------------------------------------------------------||*re(a)
           |\                                                                                 \                              2                               //         \                                                                                 \                              2                               //      |   \                                                                                 \                              2                               //         \                                                                                 \                              2                               //      
    x1 = I*|--------------------------------------------------------------------------------------------------------------------------------------------------------- - ---------------------------------------------------------------------------------------------------------------------------------------------------------| + --------------------------------------------------------------------------------------------------------------------------------------------------------- + ---------------------------------------------------------------------------------------------------------------------------------------------------------
           |                                                                     /  2        2   \                                                                                                                                           /  2        2   \                                                                   |                                                                        /  2        2   \                                                                                                                                           /  2        2   \                                                                   
           \                                                                   2*\im (a) + re (a)/                                                                                                                                         2*\im (a) + re (a)/                                                                   /                                                                      2*\im (a) + re (a)/                                                                                                                                         2*\im (a) + re (a)/                                                                   
    $$x_{1} = \frac{\left(\sqrt[4]{\left(2 \operatorname{re}{\left(b\right)} \operatorname{im}{\left(b\right)} - 4 \operatorname{im}{\left(a c\right)}\right)^{2} + \left(\left(\operatorname{re}{\left(b\right)}\right)^{2} - 4 \operatorname{re}{\left(a c\right)} - \left(\operatorname{im}{\left(b\right)}\right)^{2}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(2 \operatorname{re}{\left(b\right)} \operatorname{im}{\left(b\right)} - 4 \operatorname{im}{\left(a c\right)},\left(\operatorname{re}{\left(b\right)}\right)^{2} - 4 \operatorname{re}{\left(a c\right)} - \left(\operatorname{im}{\left(b\right)}\right)^{2} \right)}}{2} \right)} - \operatorname{im}{\left(b\right)}\right) \operatorname{im}{\left(a\right)}}{2 \left(\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}\right)} + \frac{\left(\sqrt[4]{\left(2 \operatorname{re}{\left(b\right)} \operatorname{im}{\left(b\right)} - 4 \operatorname{im}{\left(a c\right)}\right)^{2} + \left(\left(\operatorname{re}{\left(b\right)}\right)^{2} - 4 \operatorname{re}{\left(a c\right)} - \left(\operatorname{im}{\left(b\right)}\right)^{2}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(2 \operatorname{re}{\left(b\right)} \operatorname{im}{\left(b\right)} - 4 \operatorname{im}{\left(a c\right)},\left(\operatorname{re}{\left(b\right)}\right)^{2} - 4 \operatorname{re}{\left(a c\right)} - \left(\operatorname{im}{\left(b\right)}\right)^{2} \right)}}{2} \right)} - \operatorname{re}{\left(b\right)}\right) \operatorname{re}{\left(a\right)}}{2 \left(\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}\right)} + i \left(\frac{\left(\sqrt[4]{\left(2 \operatorname{re}{\left(b\right)} \operatorname{im}{\left(b\right)} - 4 \operatorname{im}{\left(a c\right)}\right)^{2} + \left(\left(\operatorname{re}{\left(b\right)}\right)^{2} - 4 \operatorname{re}{\left(a c\right)} - \left(\operatorname{im}{\left(b\right)}\right)^{2}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(2 \operatorname{re}{\left(b\right)} \operatorname{im}{\left(b\right)} - 4 \operatorname{im}{\left(a c\right)},\left(\operatorname{re}{\left(b\right)}\right)^{2} - 4 \operatorname{re}{\left(a c\right)} - \left(\operatorname{im}{\left(b\right)}\right)^{2} \right)}}{2} \right)} - \operatorname{im}{\left(b\right)}\right) \operatorname{re}{\left(a\right)}}{2 \left(\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}\right)} - \frac{\left(\sqrt[4]{\left(2 \operatorname{re}{\left(b\right)} \operatorname{im}{\left(b\right)} - 4 \operatorname{im}{\left(a c\right)}\right)^{2} + \left(\left(\operatorname{re}{\left(b\right)}\right)^{2} - 4 \operatorname{re}{\left(a c\right)} - \left(\operatorname{im}{\left(b\right)}\right)^{2}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(2 \operatorname{re}{\left(b\right)} \operatorname{im}{\left(b\right)} - 4 \operatorname{im}{\left(a c\right)},\left(\operatorname{re}{\left(b\right)}\right)^{2} - 4 \operatorname{re}{\left(a c\right)} - \left(\operatorname{im}{\left(b\right)}\right)^{2} \right)}}{2} \right)} - \operatorname{re}{\left(b\right)}\right) \operatorname{im}{\left(a\right)}}{2 \left(\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}\right)}\right)$$
           //    ________________________________________________________________                                                                            \         /    ________________________________________________________________                                                                            \      \   /    ________________________________________________________________                                                                            \         /    ________________________________________________________________                                                                            \      
           ||   /                                                              2     /     /                              2        2               \\        |         |   /                                                              2     /     /                              2        2               \\        |      |   |   /                                                              2     /     /                              2        2               \\        |         |   /                                                              2     /     /                              2        2               \\        |      
           ||4 /                              2   /  2        2               \      |atan2\-4*im(a*c) + 2*im(b)*re(b), re (b) - im (b) - 4*re(a*c)/|        |         |4 /                              2   /  2        2               \      |atan2\-4*im(a*c) + 2*im(b)*re(b), re (b) - im (b) - 4*re(a*c)/|        |      |   |4 /                              2   /  2        2               \      |atan2\-4*im(a*c) + 2*im(b)*re(b), re (b) - im (b) - 4*re(a*c)/|        |         |4 /                              2   /  2        2               \      |atan2\-4*im(a*c) + 2*im(b)*re(b), re (b) - im (b) - 4*re(a*c)/|        |      
           ||\/   (-4*im(a*c) + 2*im(b)*re(b))  + \re (b) - im (b) - 4*re(a*c)/  *cos|--------------------------------------------------------------| + re(b)|*im(a)   |\/   (-4*im(a*c) + 2*im(b)*re(b))  + \re (b) - im (b) - 4*re(a*c)/  *sin|--------------------------------------------------------------| + im(b)|*re(a)|   |\/   (-4*im(a*c) + 2*im(b)*re(b))  + \re (b) - im (b) - 4*re(a*c)/  *cos|--------------------------------------------------------------| + re(b)|*re(a)   |\/   (-4*im(a*c) + 2*im(b)*re(b))  + \re (b) - im (b) - 4*re(a*c)/  *sin|--------------------------------------------------------------| + im(b)|*im(a)
           |\                                                                        \                              2                               /        /         \                                                                        \                              2                               /        /      |   \                                                                        \                              2                               /        /         \                                                                        \                              2                               /        /      
    x2 = I*|-------------------------------------------------------------------------------------------------------------------------------------------------------- - --------------------------------------------------------------------------------------------------------------------------------------------------------| - -------------------------------------------------------------------------------------------------------------------------------------------------------- - --------------------------------------------------------------------------------------------------------------------------------------------------------
           |                                                                    /  2        2   \                                                                                                                                          /  2        2   \                                                                   |                                                                       /  2        2   \                                                                                                                                          /  2        2   \                                                                   
           \                                                                  2*\im (a) + re (a)/                                                                                                                                        2*\im (a) + re (a)/                                                                   /                                                                     2*\im (a) + re (a)/                                                                                                                                        2*\im (a) + re (a)/                                                                   
    $$x_{2} = - \frac{\left(\sqrt[4]{\left(2 \operatorname{re}{\left(b\right)} \operatorname{im}{\left(b\right)} - 4 \operatorname{im}{\left(a c\right)}\right)^{2} + \left(\left(\operatorname{re}{\left(b\right)}\right)^{2} - 4 \operatorname{re}{\left(a c\right)} - \left(\operatorname{im}{\left(b\right)}\right)^{2}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(2 \operatorname{re}{\left(b\right)} \operatorname{im}{\left(b\right)} - 4 \operatorname{im}{\left(a c\right)},\left(\operatorname{re}{\left(b\right)}\right)^{2} - 4 \operatorname{re}{\left(a c\right)} - \left(\operatorname{im}{\left(b\right)}\right)^{2} \right)}}{2} \right)} + \operatorname{im}{\left(b\right)}\right) \operatorname{im}{\left(a\right)}}{2 \left(\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}\right)} - \frac{\left(\sqrt[4]{\left(2 \operatorname{re}{\left(b\right)} \operatorname{im}{\left(b\right)} - 4 \operatorname{im}{\left(a c\right)}\right)^{2} + \left(\left(\operatorname{re}{\left(b\right)}\right)^{2} - 4 \operatorname{re}{\left(a c\right)} - \left(\operatorname{im}{\left(b\right)}\right)^{2}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(2 \operatorname{re}{\left(b\right)} \operatorname{im}{\left(b\right)} - 4 \operatorname{im}{\left(a c\right)},\left(\operatorname{re}{\left(b\right)}\right)^{2} - 4 \operatorname{re}{\left(a c\right)} - \left(\operatorname{im}{\left(b\right)}\right)^{2} \right)}}{2} \right)} + \operatorname{re}{\left(b\right)}\right) \operatorname{re}{\left(a\right)}}{2 \left(\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}\right)} + i \left(- \frac{\left(\sqrt[4]{\left(2 \operatorname{re}{\left(b\right)} \operatorname{im}{\left(b\right)} - 4 \operatorname{im}{\left(a c\right)}\right)^{2} + \left(\left(\operatorname{re}{\left(b\right)}\right)^{2} - 4 \operatorname{re}{\left(a c\right)} - \left(\operatorname{im}{\left(b\right)}\right)^{2}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(2 \operatorname{re}{\left(b\right)} \operatorname{im}{\left(b\right)} - 4 \operatorname{im}{\left(a c\right)},\left(\operatorname{re}{\left(b\right)}\right)^{2} - 4 \operatorname{re}{\left(a c\right)} - \left(\operatorname{im}{\left(b\right)}\right)^{2} \right)}}{2} \right)} + \operatorname{im}{\left(b\right)}\right) \operatorname{re}{\left(a\right)}}{2 \left(\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}\right)} + \frac{\left(\sqrt[4]{\left(2 \operatorname{re}{\left(b\right)} \operatorname{im}{\left(b\right)} - 4 \operatorname{im}{\left(a c\right)}\right)^{2} + \left(\left(\operatorname{re}{\left(b\right)}\right)^{2} - 4 \operatorname{re}{\left(a c\right)} - \left(\operatorname{im}{\left(b\right)}\right)^{2}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(2 \operatorname{re}{\left(b\right)} \operatorname{im}{\left(b\right)} - 4 \operatorname{im}{\left(a c\right)},\left(\operatorname{re}{\left(b\right)}\right)^{2} - 4 \operatorname{re}{\left(a c\right)} - \left(\operatorname{im}{\left(b\right)}\right)^{2} \right)}}{2} \right)} + \operatorname{re}{\left(b\right)}\right) \operatorname{im}{\left(a\right)}}{2 \left(\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}\right)}\right)$$
    Решение параметрического уравнения
    Дано уравнение с параметром:
    $$a x^{2} + b x + c = 0$$
    Коэффициент при x равен
    $$a$$
    тогда возможные случаи для a :
    $$a < 0$$
    $$a = 0$$
    Рассмотри все случаи подробнее:
    При
    $$a < 0$$
    уравнение будет
    $$b x + c - x^{2} = 0$$
    его решение
    $$x = \frac{b}{2} - \frac{\sqrt{b^{2} + 4 c}}{2}$$
    $$x = \frac{b}{2} + \frac{\sqrt{b^{2} + 4 c}}{2}$$
    При
    $$a = 0$$
    уравнение будет
    $$b x + c = 0$$
    его решение
    $$x = - \frac{c}{b}$$