2
/ 2*(2 + 3*re(a))*im(a) 6*(3 + re(a))*im(a) \ 6*im (a) 2*(2 + 3*re(a))*(3 + re(a))
x1 = I*|- --------------------- + ---------------------| + --------------------- + ---------------------------
| 2 2 2 2 | 2 2 2 2
\ (3 + re(a)) + im (a) (3 + re(a)) + im (a)/ (3 + re(a)) + im (a) (3 + re(a)) + im (a)
$$x_{1} = i \left(\frac{6 \left(\operatorname{re}{\left(a\right)} + 3\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)} + 3\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} - \frac{2 \left(3 \operatorname{re}{\left(a\right)} + 2\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)} + 3\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}\right) + \frac{2 \left(\operatorname{re}{\left(a\right)} + 3\right) \left(3 \operatorname{re}{\left(a\right)} + 2\right)}{\left(\operatorname{re}{\left(a\right)} + 3\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} + \frac{6 \left(\operatorname{im}{\left(a\right)}\right)^{2}}{\left(\operatorname{re}{\left(a\right)} + 3\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}$$
Сумма и произведение корней
[src] 2
/ 2*(2 + 3*re(a))*im(a) 6*(3 + re(a))*im(a) \ 6*im (a) 2*(2 + 3*re(a))*(3 + re(a))
I*|- --------------------- + ---------------------| + --------------------- + ---------------------------
| 2 2 2 2 | 2 2 2 2
\ (3 + re(a)) + im (a) (3 + re(a)) + im (a)/ (3 + re(a)) + im (a) (3 + re(a)) + im (a)
$$i \left(\frac{6 \left(\operatorname{re}{\left(a\right)} + 3\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)} + 3\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} - \frac{2 \left(3 \operatorname{re}{\left(a\right)} + 2\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)} + 3\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}\right) + \frac{2 \left(\operatorname{re}{\left(a\right)} + 3\right) \left(3 \operatorname{re}{\left(a\right)} + 2\right)}{\left(\operatorname{re}{\left(a\right)} + 3\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} + \frac{6 \left(\operatorname{im}{\left(a\right)}\right)^{2}}{\left(\operatorname{re}{\left(a\right)} + 3\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}$$
2
/ 2*(2 + 3*re(a))*im(a) 6*(3 + re(a))*im(a) \ 6*im (a) 2*(2 + 3*re(a))*(3 + re(a))
I*|- --------------------- + ---------------------| + --------------------- + ---------------------------
| 2 2 2 2 | 2 2 2 2
\ (3 + re(a)) + im (a) (3 + re(a)) + im (a)/ (3 + re(a)) + im (a) (3 + re(a)) + im (a)
$$i \left(\frac{6 \left(\operatorname{re}{\left(a\right)} + 3\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)} + 3\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} - \frac{2 \left(3 \operatorname{re}{\left(a\right)} + 2\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)} + 3\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}\right) + \frac{2 \left(\operatorname{re}{\left(a\right)} + 3\right) \left(3 \operatorname{re}{\left(a\right)} + 2\right)}{\left(\operatorname{re}{\left(a\right)} + 3\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} + \frac{6 \left(\operatorname{im}{\left(a\right)}\right)^{2}}{\left(\operatorname{re}{\left(a\right)} + 3\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}$$
2
/ 2*(2 + 3*re(a))*im(a) 6*(3 + re(a))*im(a) \ 6*im (a) 2*(2 + 3*re(a))*(3 + re(a))
I*|- --------------------- + ---------------------| + --------------------- + ---------------------------
| 2 2 2 2 | 2 2 2 2
\ (3 + re(a)) + im (a) (3 + re(a)) + im (a)/ (3 + re(a)) + im (a) (3 + re(a)) + im (a)
$$i \left(\frac{6 \left(\operatorname{re}{\left(a\right)} + 3\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)} + 3\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} - \frac{2 \left(3 \operatorname{re}{\left(a\right)} + 2\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)} + 3\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}\right) + \frac{2 \left(\operatorname{re}{\left(a\right)} + 3\right) \left(3 \operatorname{re}{\left(a\right)} + 2\right)}{\left(\operatorname{re}{\left(a\right)} + 3\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} + \frac{6 \left(\operatorname{im}{\left(a\right)}\right)^{2}}{\left(\operatorname{re}{\left(a\right)} + 3\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}$$
/ 2 \
2*\3*im (a) + (2 + 3*re(a))*(3 + re(a)) + 7*I*im(a)/
----------------------------------------------------
2 2
(3 + re(a)) + im (a)
$$\frac{2 \left(\left(\operatorname{re}{\left(a\right)} + 3\right) \left(3 \operatorname{re}{\left(a\right)} + 2\right) + 3 \left(\operatorname{im}{\left(a\right)}\right)^{2} + 7 i \operatorname{im}{\left(a\right)}\right)}{\left(\operatorname{re}{\left(a\right)} + 3\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}$$
Решение параметрического уравнения
Дано уравнение с параметром:
$$a x - 4 = 6 a - 3 x$$
Коэффициент при x равен
$$a + 3$$
тогда возможные случаи для a :
$$a < -3$$
$$a = -3$$
Рассмотри все случаи подробнее:
При
$$a < -3$$
уравнение будет
$$20 - x = 0$$
его решение
$$x = 20$$
При
$$a = -3$$
уравнение будет
$$14 = 0$$
его решение
нет решений