2
/ (1 + 2*re(a))*im(a) 2*(-6 + re(a))*im(a) \ 2*im (a) (1 + 2*re(a))*(-6 + re(a))
x1 = I*|- ---------------------- + ----------------------| + ---------------------- + --------------------------
| 2 2 2 2 | 2 2 2 2
\ (-6 + re(a)) + im (a) (-6 + re(a)) + im (a)/ (-6 + re(a)) + im (a) (-6 + re(a)) + im (a)
$$x_{1} = i \left(\frac{2 \left(\operatorname{re}{\left(a\right)} - 6\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)} - 6\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} - \frac{\left(2 \operatorname{re}{\left(a\right)} + 1\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)} - 6\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}\right) + \frac{\left(\operatorname{re}{\left(a\right)} - 6\right) \left(2 \operatorname{re}{\left(a\right)} + 1\right)}{\left(\operatorname{re}{\left(a\right)} - 6\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} + \frac{2 \left(\operatorname{im}{\left(a\right)}\right)^{2}}{\left(\operatorname{re}{\left(a\right)} - 6\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}$$
Сумма и произведение корней
[src] 2
/ (1 + 2*re(a))*im(a) 2*(-6 + re(a))*im(a) \ 2*im (a) (1 + 2*re(a))*(-6 + re(a))
I*|- ---------------------- + ----------------------| + ---------------------- + --------------------------
| 2 2 2 2 | 2 2 2 2
\ (-6 + re(a)) + im (a) (-6 + re(a)) + im (a)/ (-6 + re(a)) + im (a) (-6 + re(a)) + im (a)
$$i \left(\frac{2 \left(\operatorname{re}{\left(a\right)} - 6\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)} - 6\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} - \frac{\left(2 \operatorname{re}{\left(a\right)} + 1\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)} - 6\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}\right) + \frac{\left(\operatorname{re}{\left(a\right)} - 6\right) \left(2 \operatorname{re}{\left(a\right)} + 1\right)}{\left(\operatorname{re}{\left(a\right)} - 6\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} + \frac{2 \left(\operatorname{im}{\left(a\right)}\right)^{2}}{\left(\operatorname{re}{\left(a\right)} - 6\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}$$
2
/ (1 + 2*re(a))*im(a) 2*(-6 + re(a))*im(a) \ 2*im (a) (1 + 2*re(a))*(-6 + re(a))
I*|- ---------------------- + ----------------------| + ---------------------- + --------------------------
| 2 2 2 2 | 2 2 2 2
\ (-6 + re(a)) + im (a) (-6 + re(a)) + im (a)/ (-6 + re(a)) + im (a) (-6 + re(a)) + im (a)
$$i \left(\frac{2 \left(\operatorname{re}{\left(a\right)} - 6\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)} - 6\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} - \frac{\left(2 \operatorname{re}{\left(a\right)} + 1\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)} - 6\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}\right) + \frac{\left(\operatorname{re}{\left(a\right)} - 6\right) \left(2 \operatorname{re}{\left(a\right)} + 1\right)}{\left(\operatorname{re}{\left(a\right)} - 6\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} + \frac{2 \left(\operatorname{im}{\left(a\right)}\right)^{2}}{\left(\operatorname{re}{\left(a\right)} - 6\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}$$
2
/ (1 + 2*re(a))*im(a) 2*(-6 + re(a))*im(a) \ 2*im (a) (1 + 2*re(a))*(-6 + re(a))
I*|- ---------------------- + ----------------------| + ---------------------- + --------------------------
| 2 2 2 2 | 2 2 2 2
\ (-6 + re(a)) + im (a) (-6 + re(a)) + im (a)/ (-6 + re(a)) + im (a) (-6 + re(a)) + im (a)
$$i \left(\frac{2 \left(\operatorname{re}{\left(a\right)} - 6\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)} - 6\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} - \frac{\left(2 \operatorname{re}{\left(a\right)} + 1\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)} - 6\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}\right) + \frac{\left(\operatorname{re}{\left(a\right)} - 6\right) \left(2 \operatorname{re}{\left(a\right)} + 1\right)}{\left(\operatorname{re}{\left(a\right)} - 6\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} + \frac{2 \left(\operatorname{im}{\left(a\right)}\right)^{2}}{\left(\operatorname{re}{\left(a\right)} - 6\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}$$
2
2*im (a) + (1 + 2*re(a))*(-6 + re(a)) - 13*I*im(a)
--------------------------------------------------
2 2
(-6 + re(a)) + im (a)
$$\frac{\left(\operatorname{re}{\left(a\right)} - 6\right) \left(2 \operatorname{re}{\left(a\right)} + 1\right) + 2 \left(\operatorname{im}{\left(a\right)}\right)^{2} - 13 i \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)} - 6\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}$$
Решение параметрического уравнения
Дано уравнение с параметром:
$$a x - 1 = 2 a + 6 x$$
Коэффициент при x равен
$$a - 6$$
тогда возможные случаи для a :
$$a < 6$$
$$a = 6$$
Рассмотри все случаи подробнее:
При
$$a < 6$$
уравнение будет
$$- x - 11 = 0$$
его решение
$$x = -11$$
При
$$a = 6$$
уравнение будет
$$-13 = 0$$
его решение
нет решений