2
/ (-1 + re(a))*im(a) (5 + re(a))*im(a) \ im (a) (-1 + re(a))*(5 + re(a))
x1 = I*|---------------------- - ----------------------| + ---------------------- + ------------------------
| 2 2 2 2 | 2 2 2 2
\(-1 + re(a)) + im (a) (-1 + re(a)) + im (a)/ (-1 + re(a)) + im (a) (-1 + re(a)) + im (a)
$$x_{1} = i \left(\frac{\left(\operatorname{re}{\left(a\right)} - 1\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)} - 1\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} - \frac{\left(\operatorname{re}{\left(a\right)} + 5\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)} - 1\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}\right) + \frac{\left(\operatorname{re}{\left(a\right)} - 1\right) \left(\operatorname{re}{\left(a\right)} + 5\right)}{\left(\operatorname{re}{\left(a\right)} - 1\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} + \frac{\left(\operatorname{im}{\left(a\right)}\right)^{2}}{\left(\operatorname{re}{\left(a\right)} - 1\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}$$
Сумма и произведение корней
[src] 2
/ (-1 + re(a))*im(a) (5 + re(a))*im(a) \ im (a) (-1 + re(a))*(5 + re(a))
I*|---------------------- - ----------------------| + ---------------------- + ------------------------
| 2 2 2 2 | 2 2 2 2
\(-1 + re(a)) + im (a) (-1 + re(a)) + im (a)/ (-1 + re(a)) + im (a) (-1 + re(a)) + im (a)
$$i \left(\frac{\left(\operatorname{re}{\left(a\right)} - 1\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)} - 1\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} - \frac{\left(\operatorname{re}{\left(a\right)} + 5\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)} - 1\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}\right) + \frac{\left(\operatorname{re}{\left(a\right)} - 1\right) \left(\operatorname{re}{\left(a\right)} + 5\right)}{\left(\operatorname{re}{\left(a\right)} - 1\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} + \frac{\left(\operatorname{im}{\left(a\right)}\right)^{2}}{\left(\operatorname{re}{\left(a\right)} - 1\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}$$
2
/ (-1 + re(a))*im(a) (5 + re(a))*im(a) \ im (a) (-1 + re(a))*(5 + re(a))
I*|---------------------- - ----------------------| + ---------------------- + ------------------------
| 2 2 2 2 | 2 2 2 2
\(-1 + re(a)) + im (a) (-1 + re(a)) + im (a)/ (-1 + re(a)) + im (a) (-1 + re(a)) + im (a)
$$i \left(\frac{\left(\operatorname{re}{\left(a\right)} - 1\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)} - 1\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} - \frac{\left(\operatorname{re}{\left(a\right)} + 5\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)} - 1\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}\right) + \frac{\left(\operatorname{re}{\left(a\right)} - 1\right) \left(\operatorname{re}{\left(a\right)} + 5\right)}{\left(\operatorname{re}{\left(a\right)} - 1\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} + \frac{\left(\operatorname{im}{\left(a\right)}\right)^{2}}{\left(\operatorname{re}{\left(a\right)} - 1\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}$$
2
/ (-1 + re(a))*im(a) (5 + re(a))*im(a) \ im (a) (-1 + re(a))*(5 + re(a))
I*|---------------------- - ----------------------| + ---------------------- + ------------------------
| 2 2 2 2 | 2 2 2 2
\(-1 + re(a)) + im (a) (-1 + re(a)) + im (a)/ (-1 + re(a)) + im (a) (-1 + re(a)) + im (a)
$$i \left(\frac{\left(\operatorname{re}{\left(a\right)} - 1\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)} - 1\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} - \frac{\left(\operatorname{re}{\left(a\right)} + 5\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)} - 1\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}\right) + \frac{\left(\operatorname{re}{\left(a\right)} - 1\right) \left(\operatorname{re}{\left(a\right)} + 5\right)}{\left(\operatorname{re}{\left(a\right)} - 1\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} + \frac{\left(\operatorname{im}{\left(a\right)}\right)^{2}}{\left(\operatorname{re}{\left(a\right)} - 1\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}$$
2
im (a) + (-1 + re(a))*(5 + re(a)) - 6*I*im(a)
---------------------------------------------
2 2
(-1 + re(a)) + im (a)
$$\frac{\left(\operatorname{re}{\left(a\right)} - 1\right) \left(\operatorname{re}{\left(a\right)} + 5\right) + \left(\operatorname{im}{\left(a\right)}\right)^{2} - 6 i \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)} - 1\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}$$
Решение параметрического уравнения
Дано уравнение с параметром:
$$a x - 5 = a + x$$
Коэффициент при x равен
$$a - 1$$
тогда возможные случаи для a :
$$a < 1$$
$$a = 1$$
Рассмотри все случаи подробнее:
При
$$a < 1$$
уравнение будет
$$- x - 5 = 0$$
его решение
$$x = -5$$
При
$$a = 1$$
уравнение будет
$$-6 = 0$$
его решение
нет решений