/ 8*im(y)*re(a) 4*(5 - 2*re(y))*im(a)\ 8*im(a)*im(y) 4*(5 - 2*re(y))*re(a)
x1 = I*|- --------------- - ---------------------| - --------------- + ---------------------
| 2 2 2 2 | 2 2 2 2
\ im (a) + re (a) im (a) + re (a) / im (a) + re (a) im (a) + re (a)
$$x_{1} = \frac{4 \left(5 - 2 \operatorname{re}{\left(y\right)}\right) \operatorname{re}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} + i \left(- \frac{4 \left(5 - 2 \operatorname{re}{\left(y\right)}\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} - \frac{8 \operatorname{re}{\left(a\right)} \operatorname{im}{\left(y\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}\right) - \frac{8 \operatorname{im}{\left(a\right)} \operatorname{im}{\left(y\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}$$
Сумма и произведение корней
[src] / 8*im(y)*re(a) 4*(5 - 2*re(y))*im(a)\ 8*im(a)*im(y) 4*(5 - 2*re(y))*re(a)
I*|- --------------- - ---------------------| - --------------- + ---------------------
| 2 2 2 2 | 2 2 2 2
\ im (a) + re (a) im (a) + re (a) / im (a) + re (a) im (a) + re (a)
$$\frac{4 \left(5 - 2 \operatorname{re}{\left(y\right)}\right) \operatorname{re}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} + i \left(- \frac{4 \left(5 - 2 \operatorname{re}{\left(y\right)}\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} - \frac{8 \operatorname{re}{\left(a\right)} \operatorname{im}{\left(y\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}\right) - \frac{8 \operatorname{im}{\left(a\right)} \operatorname{im}{\left(y\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}$$
/ 8*im(y)*re(a) 4*(5 - 2*re(y))*im(a)\ 8*im(a)*im(y) 4*(5 - 2*re(y))*re(a)
I*|- --------------- - ---------------------| - --------------- + ---------------------
| 2 2 2 2 | 2 2 2 2
\ im (a) + re (a) im (a) + re (a) / im (a) + re (a) im (a) + re (a)
$$\frac{4 \left(5 - 2 \operatorname{re}{\left(y\right)}\right) \operatorname{re}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} + i \left(- \frac{4 \left(5 - 2 \operatorname{re}{\left(y\right)}\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} - \frac{8 \operatorname{re}{\left(a\right)} \operatorname{im}{\left(y\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}\right) - \frac{8 \operatorname{im}{\left(a\right)} \operatorname{im}{\left(y\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}$$
/ 8*im(y)*re(a) 4*(5 - 2*re(y))*im(a)\ 8*im(a)*im(y) 4*(5 - 2*re(y))*re(a)
I*|- --------------- - ---------------------| - --------------- + ---------------------
| 2 2 2 2 | 2 2 2 2
\ im (a) + re (a) im (a) + re (a) / im (a) + re (a) im (a) + re (a)
$$\frac{4 \left(5 - 2 \operatorname{re}{\left(y\right)}\right) \operatorname{re}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} + i \left(- \frac{4 \left(5 - 2 \operatorname{re}{\left(y\right)}\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} - \frac{8 \operatorname{re}{\left(a\right)} \operatorname{im}{\left(y\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}\right) - \frac{8 \operatorname{im}{\left(a\right)} \operatorname{im}{\left(y\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}$$
4*(I*((-5 + 2*re(y))*im(a) - 2*im(y)*re(a)) - (-5 + 2*re(y))*re(a) - 2*im(a)*im(y))
-----------------------------------------------------------------------------------
2 2
im (a) + re (a)
$$\frac{4 \left(i \left(\left(2 \operatorname{re}{\left(y\right)} - 5\right) \operatorname{im}{\left(a\right)} - 2 \operatorname{re}{\left(a\right)} \operatorname{im}{\left(y\right)}\right) - \left(2 \operatorname{re}{\left(y\right)} - 5\right) \operatorname{re}{\left(a\right)} - 2 \operatorname{im}{\left(a\right)} \operatorname{im}{\left(y\right)}\right)}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}$$
Решение параметрического уравнения
Дано уравнение с параметром:
$$a x + 8 y = 20$$
Коэффициент при x равен
$$a$$
тогда возможные случаи для a :
$$a < 0$$
$$a = 0$$
Рассмотри все случаи подробнее:
При
$$a < 0$$
уравнение будет
$$- x + 8 y - 20 = 0$$
его решение
$$x = 8 y - 20$$
При
$$a = 0$$
уравнение будет
$$8 y - 20 = 0$$
его решение