/ / /c\ /c\\\ / / /c\ /c\\\
_________________ |atan2|-im|-|, -re|-||| _________________ |atan2|-im|-|, -re|-|||
/ 2/c\ 2/c\ | \ \a/ \a//| / 2/c\ 2/c\ | \ \a/ \a//|
x1 = - 4 / im |-| + re |-| *cos|---------------------| - I*4 / im |-| + re |-| *sin|---------------------|
\/ \a/ \a/ \ 2 / \/ \a/ \a/ \ 2 /
$$x_{1} = - i \sqrt[4]{\left(\operatorname{re}{\left(\frac{c}{a}\right)}\right)^{2} + \left(\operatorname{im}{\left(\frac{c}{a}\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(- \operatorname{im}{\left(\frac{c}{a}\right)},- \operatorname{re}{\left(\frac{c}{a}\right)} \right)}}{2} \right)} - \sqrt[4]{\left(\operatorname{re}{\left(\frac{c}{a}\right)}\right)^{2} + \left(\operatorname{im}{\left(\frac{c}{a}\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(- \operatorname{im}{\left(\frac{c}{a}\right)},- \operatorname{re}{\left(\frac{c}{a}\right)} \right)}}{2} \right)}$$
/ / /c\ /c\\\ / / /c\ /c\\\
_________________ |atan2|-im|-|, -re|-||| _________________ |atan2|-im|-|, -re|-|||
/ 2/c\ 2/c\ | \ \a/ \a//| / 2/c\ 2/c\ | \ \a/ \a//|
x2 = 4 / im |-| + re |-| *cos|---------------------| + I*4 / im |-| + re |-| *sin|---------------------|
\/ \a/ \a/ \ 2 / \/ \a/ \a/ \ 2 /
$$x_{2} = i \sqrt[4]{\left(\operatorname{re}{\left(\frac{c}{a}\right)}\right)^{2} + \left(\operatorname{im}{\left(\frac{c}{a}\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(- \operatorname{im}{\left(\frac{c}{a}\right)},- \operatorname{re}{\left(\frac{c}{a}\right)} \right)}}{2} \right)} + \sqrt[4]{\left(\operatorname{re}{\left(\frac{c}{a}\right)}\right)^{2} + \left(\operatorname{im}{\left(\frac{c}{a}\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(- \operatorname{im}{\left(\frac{c}{a}\right)},- \operatorname{re}{\left(\frac{c}{a}\right)} \right)}}{2} \right)}$$
Сумма и произведение корней
[src] / / /c\ /c\\\ / / /c\ /c\\\ / / /c\ /c\\\ / / /c\ /c\\\
_________________ |atan2|-im|-|, -re|-||| _________________ |atan2|-im|-|, -re|-||| _________________ |atan2|-im|-|, -re|-||| _________________ |atan2|-im|-|, -re|-|||
/ 2/c\ 2/c\ | \ \a/ \a//| / 2/c\ 2/c\ | \ \a/ \a//| / 2/c\ 2/c\ | \ \a/ \a//| / 2/c\ 2/c\ | \ \a/ \a//|
- 4 / im |-| + re |-| *cos|---------------------| - I*4 / im |-| + re |-| *sin|---------------------| + 4 / im |-| + re |-| *cos|---------------------| + I*4 / im |-| + re |-| *sin|---------------------|
\/ \a/ \a/ \ 2 / \/ \a/ \a/ \ 2 / \/ \a/ \a/ \ 2 / \/ \a/ \a/ \ 2 /
$$\left(- i \sqrt[4]{\left(\operatorname{re}{\left(\frac{c}{a}\right)}\right)^{2} + \left(\operatorname{im}{\left(\frac{c}{a}\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(- \operatorname{im}{\left(\frac{c}{a}\right)},- \operatorname{re}{\left(\frac{c}{a}\right)} \right)}}{2} \right)} - \sqrt[4]{\left(\operatorname{re}{\left(\frac{c}{a}\right)}\right)^{2} + \left(\operatorname{im}{\left(\frac{c}{a}\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(- \operatorname{im}{\left(\frac{c}{a}\right)},- \operatorname{re}{\left(\frac{c}{a}\right)} \right)}}{2} \right)}\right) + \left(i \sqrt[4]{\left(\operatorname{re}{\left(\frac{c}{a}\right)}\right)^{2} + \left(\operatorname{im}{\left(\frac{c}{a}\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(- \operatorname{im}{\left(\frac{c}{a}\right)},- \operatorname{re}{\left(\frac{c}{a}\right)} \right)}}{2} \right)} + \sqrt[4]{\left(\operatorname{re}{\left(\frac{c}{a}\right)}\right)^{2} + \left(\operatorname{im}{\left(\frac{c}{a}\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(- \operatorname{im}{\left(\frac{c}{a}\right)},- \operatorname{re}{\left(\frac{c}{a}\right)} \right)}}{2} \right)}\right)$$
/ / / /c\ /c\\\ / / /c\ /c\\\\ / / / /c\ /c\\\ / / /c\ /c\\\\
| _________________ |atan2|-im|-|, -re|-||| _________________ |atan2|-im|-|, -re|-|||| | _________________ |atan2|-im|-|, -re|-||| _________________ |atan2|-im|-|, -re|-||||
| / 2/c\ 2/c\ | \ \a/ \a//| / 2/c\ 2/c\ | \ \a/ \a//|| | / 2/c\ 2/c\ | \ \a/ \a//| / 2/c\ 2/c\ | \ \a/ \a//||
|- 4 / im |-| + re |-| *cos|---------------------| - I*4 / im |-| + re |-| *sin|---------------------||*|4 / im |-| + re |-| *cos|---------------------| + I*4 / im |-| + re |-| *sin|---------------------||
\ \/ \a/ \a/ \ 2 / \/ \a/ \a/ \ 2 // \\/ \a/ \a/ \ 2 / \/ \a/ \a/ \ 2 //
$$\left(- i \sqrt[4]{\left(\operatorname{re}{\left(\frac{c}{a}\right)}\right)^{2} + \left(\operatorname{im}{\left(\frac{c}{a}\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(- \operatorname{im}{\left(\frac{c}{a}\right)},- \operatorname{re}{\left(\frac{c}{a}\right)} \right)}}{2} \right)} - \sqrt[4]{\left(\operatorname{re}{\left(\frac{c}{a}\right)}\right)^{2} + \left(\operatorname{im}{\left(\frac{c}{a}\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(- \operatorname{im}{\left(\frac{c}{a}\right)},- \operatorname{re}{\left(\frac{c}{a}\right)} \right)}}{2} \right)}\right) \left(i \sqrt[4]{\left(\operatorname{re}{\left(\frac{c}{a}\right)}\right)^{2} + \left(\operatorname{im}{\left(\frac{c}{a}\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(- \operatorname{im}{\left(\frac{c}{a}\right)},- \operatorname{re}{\left(\frac{c}{a}\right)} \right)}}{2} \right)} + \sqrt[4]{\left(\operatorname{re}{\left(\frac{c}{a}\right)}\right)^{2} + \left(\operatorname{im}{\left(\frac{c}{a}\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(- \operatorname{im}{\left(\frac{c}{a}\right)},- \operatorname{re}{\left(\frac{c}{a}\right)} \right)}}{2} \right)}\right)$$
/ /c\ /c\\
_________________ I*atan2|-im|-|, -re|-||
/ 2/c\ 2/c\ \ \a/ \a//
- / im |-| + re |-| *e
\/ \a/ \a/
$$- \sqrt{\left(\operatorname{re}{\left(\frac{c}{a}\right)}\right)^{2} + \left(\operatorname{im}{\left(\frac{c}{a}\right)}\right)^{2}} e^{i \operatorname{atan_{2}}{\left(- \operatorname{im}{\left(\frac{c}{a}\right)},- \operatorname{re}{\left(\frac{c}{a}\right)} \right)}}$$
Решение параметрического уравнения
Дано уравнение с параметром:
$$a x^{2} + c = 0$$
Коэффициент при x равен
$$a$$
тогда возможные случаи для a :
$$a < 0$$
$$a = 0$$
Рассмотри все случаи подробнее:
При
$$a < 0$$
уравнение будет
$$c - x^{2} = 0$$
его решение
$$x = - \sqrt{c}$$
$$x = \sqrt{c}$$
При
$$a = 0$$
уравнение будет
$$c = 0$$
его решение
Теорема Виета
перепишем уравнение
$$a x^{2} + c = 0$$
из
$$a x^{2} + b x + c = 0$$
как приведённое квадратное уравнение
$$x^{2} + \frac{b x}{a} + \frac{c}{a} = 0$$
$$\frac{a x^{2} + c}{a} = 0$$
$$p x + q + x^{2} = 0$$
где
$$p = \frac{b}{a}$$
$$p = 0$$
$$q = \frac{c}{a}$$
$$q = \frac{c}{a}$$
Формулы Виета
$$x_{1} + x_{2} = - p$$
$$x_{1} x_{2} = q$$
$$x_{1} + x_{2} = 0$$
$$x_{1} x_{2} = \frac{c}{a}$$