b^4-1=0 (уравнение)
Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: b^4-1=0
Решение
Подробное решение
Дано уравнение
$$b^{4} - 1 = 0$$
Т.к. степень в ур-нии равна = 4 - содержит чётное число 4 в числителе, то
ур-ние будет иметь два действительных корня.
Извлечём корень 4-й степени из обеих частей ур-ния:
Получим:
$$\sqrt[4]{b^{4}} = \sqrt[4]{1}$$
$$\sqrt[4]{b^{4}} = -1 \sqrt[4]{1}$$
или
$$b = 1$$
$$b = -1$$
Получим ответ: b = 1
Получим ответ: b = -1
или
$$b_{1} = -1$$
$$b_{2} = 1$$
Остальные 2 корня(ей) являются комплексными.
сделаем замену:
$$z = b$$
тогда ур-ние будет таким:
$$z^{4} = 1$$
Любое комплексное число можно представить так:
$$z = r e^{i p}$$
подставляем в уравнение
$$r^{4} e^{4 i p} = 1$$
где
$$r = 1$$
- модуль комплексного числа
Подставляем r:
$$e^{4 i p} = 1$$
Используя формулу Эйлера, найдём корни для p
$$i \sin{\left (4 p \right )} + \cos{\left (4 p \right )} = 1$$
значит
$$\cos{\left (4 p \right )} = 1$$
и
$$\sin{\left (4 p \right )} = 0$$
тогда
$$p = \frac{\pi N}{2}$$
где N=0,1,2,3,...
Перебирая значения N и подставив p в формулу для z
Значит, решением будет для z:
$$z_{1} = -1$$
$$z_{2} = 1$$
$$z_{3} = - i$$
$$z_{4} = i$$
делаем обратную замену
$$z = b$$
$$b = z$$
Тогда, окончательный ответ:
$$b_{1} = -1$$
$$b_{2} = 1$$
$$b_{3} = - i$$
$$b_{4} = i$$