2
/ (-6 + 5*re(b))*im(b) 5*(2 + re(b))*im(b) \ 5*im (b) (-6 + 5*re(b))*(2 + re(b))
x1 = I*|- --------------------- + ---------------------| + --------------------- + --------------------------
| 2 2 2 2 | 2 2 2 2
\ (2 + re(b)) + im (b) (2 + re(b)) + im (b)/ (2 + re(b)) + im (b) (2 + re(b)) + im (b)
$$x_{1} = i \left(\frac{5 \left(\operatorname{re}{\left(b\right)} + 2\right) \operatorname{im}{\left(b\right)}}{\left(\operatorname{re}{\left(b\right)} + 2\right)^{2} + \left(\operatorname{im}{\left(b\right)}\right)^{2}} - \frac{\left(5 \operatorname{re}{\left(b\right)} - 6\right) \operatorname{im}{\left(b\right)}}{\left(\operatorname{re}{\left(b\right)} + 2\right)^{2} + \left(\operatorname{im}{\left(b\right)}\right)^{2}}\right) + \frac{\left(\operatorname{re}{\left(b\right)} + 2\right) \left(5 \operatorname{re}{\left(b\right)} - 6\right)}{\left(\operatorname{re}{\left(b\right)} + 2\right)^{2} + \left(\operatorname{im}{\left(b\right)}\right)^{2}} + \frac{5 \left(\operatorname{im}{\left(b\right)}\right)^{2}}{\left(\operatorname{re}{\left(b\right)} + 2\right)^{2} + \left(\operatorname{im}{\left(b\right)}\right)^{2}}$$
Сумма и произведение корней
[src] 2
/ (-6 + 5*re(b))*im(b) 5*(2 + re(b))*im(b) \ 5*im (b) (-6 + 5*re(b))*(2 + re(b))
I*|- --------------------- + ---------------------| + --------------------- + --------------------------
| 2 2 2 2 | 2 2 2 2
\ (2 + re(b)) + im (b) (2 + re(b)) + im (b)/ (2 + re(b)) + im (b) (2 + re(b)) + im (b)
$$i \left(\frac{5 \left(\operatorname{re}{\left(b\right)} + 2\right) \operatorname{im}{\left(b\right)}}{\left(\operatorname{re}{\left(b\right)} + 2\right)^{2} + \left(\operatorname{im}{\left(b\right)}\right)^{2}} - \frac{\left(5 \operatorname{re}{\left(b\right)} - 6\right) \operatorname{im}{\left(b\right)}}{\left(\operatorname{re}{\left(b\right)} + 2\right)^{2} + \left(\operatorname{im}{\left(b\right)}\right)^{2}}\right) + \frac{\left(\operatorname{re}{\left(b\right)} + 2\right) \left(5 \operatorname{re}{\left(b\right)} - 6\right)}{\left(\operatorname{re}{\left(b\right)} + 2\right)^{2} + \left(\operatorname{im}{\left(b\right)}\right)^{2}} + \frac{5 \left(\operatorname{im}{\left(b\right)}\right)^{2}}{\left(\operatorname{re}{\left(b\right)} + 2\right)^{2} + \left(\operatorname{im}{\left(b\right)}\right)^{2}}$$
2
/ (-6 + 5*re(b))*im(b) 5*(2 + re(b))*im(b) \ 5*im (b) (-6 + 5*re(b))*(2 + re(b))
I*|- --------------------- + ---------------------| + --------------------- + --------------------------
| 2 2 2 2 | 2 2 2 2
\ (2 + re(b)) + im (b) (2 + re(b)) + im (b)/ (2 + re(b)) + im (b) (2 + re(b)) + im (b)
$$i \left(\frac{5 \left(\operatorname{re}{\left(b\right)} + 2\right) \operatorname{im}{\left(b\right)}}{\left(\operatorname{re}{\left(b\right)} + 2\right)^{2} + \left(\operatorname{im}{\left(b\right)}\right)^{2}} - \frac{\left(5 \operatorname{re}{\left(b\right)} - 6\right) \operatorname{im}{\left(b\right)}}{\left(\operatorname{re}{\left(b\right)} + 2\right)^{2} + \left(\operatorname{im}{\left(b\right)}\right)^{2}}\right) + \frac{\left(\operatorname{re}{\left(b\right)} + 2\right) \left(5 \operatorname{re}{\left(b\right)} - 6\right)}{\left(\operatorname{re}{\left(b\right)} + 2\right)^{2} + \left(\operatorname{im}{\left(b\right)}\right)^{2}} + \frac{5 \left(\operatorname{im}{\left(b\right)}\right)^{2}}{\left(\operatorname{re}{\left(b\right)} + 2\right)^{2} + \left(\operatorname{im}{\left(b\right)}\right)^{2}}$$
2
/ (-6 + 5*re(b))*im(b) 5*(2 + re(b))*im(b) \ 5*im (b) (-6 + 5*re(b))*(2 + re(b))
I*|- --------------------- + ---------------------| + --------------------- + --------------------------
| 2 2 2 2 | 2 2 2 2
\ (2 + re(b)) + im (b) (2 + re(b)) + im (b)/ (2 + re(b)) + im (b) (2 + re(b)) + im (b)
$$i \left(\frac{5 \left(\operatorname{re}{\left(b\right)} + 2\right) \operatorname{im}{\left(b\right)}}{\left(\operatorname{re}{\left(b\right)} + 2\right)^{2} + \left(\operatorname{im}{\left(b\right)}\right)^{2}} - \frac{\left(5 \operatorname{re}{\left(b\right)} - 6\right) \operatorname{im}{\left(b\right)}}{\left(\operatorname{re}{\left(b\right)} + 2\right)^{2} + \left(\operatorname{im}{\left(b\right)}\right)^{2}}\right) + \frac{\left(\operatorname{re}{\left(b\right)} + 2\right) \left(5 \operatorname{re}{\left(b\right)} - 6\right)}{\left(\operatorname{re}{\left(b\right)} + 2\right)^{2} + \left(\operatorname{im}{\left(b\right)}\right)^{2}} + \frac{5 \left(\operatorname{im}{\left(b\right)}\right)^{2}}{\left(\operatorname{re}{\left(b\right)} + 2\right)^{2} + \left(\operatorname{im}{\left(b\right)}\right)^{2}}$$
2
5*im (b) + (-6 + 5*re(b))*(2 + re(b)) + 16*I*im(b)
--------------------------------------------------
2 2
(2 + re(b)) + im (b)
$$\frac{\left(\operatorname{re}{\left(b\right)} + 2\right) \left(5 \operatorname{re}{\left(b\right)} - 6\right) + 5 \left(\operatorname{im}{\left(b\right)}\right)^{2} + 16 i \operatorname{im}{\left(b\right)}}{\left(\operatorname{re}{\left(b\right)} + 2\right)^{2} + \left(\operatorname{im}{\left(b\right)}\right)^{2}}$$
Решение параметрического уравнения
Дано уравнение с параметром:
$$b x + 6 = 5 b - 2 x$$
Коэффициент при x равен
$$b + 2$$
тогда возможные случаи для b :
$$b < -2$$
$$b = -2$$
Рассмотри все случаи подробнее:
При
$$b < -2$$
уравнение будет
$$21 - x = 0$$
его решение
$$x = 21$$
При
$$b = -2$$
уравнение будет
$$16 = 0$$
его решение
нет решений