Решите уравнение c*x=c+6 (c умножить на х равно c плюс 6) - Найдите корень уравнения подробно по-шагам. [Есть ответ!]

c*x=c+6 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: c*x=c+6

    Решение

    Подробное решение
    Дано линейное уравнение:
    c*x = c+6

    Разделим обе части ур-ния на c
    x = 6 + c / (c)

    Получим ответ: x = (6 + c)/c
    График
    Быстрый ответ [src]
                                                          2                           
           /  im(c)*re(c)     (6 + re(c))*im(c)\        im (c)       (6 + re(c))*re(c)
    x1 = I*|--------------- - -----------------| + --------------- + -----------------
           |  2        2         2        2    |     2        2         2        2    
           \im (c) + re (c)    im (c) + re (c) /   im (c) + re (c)    im (c) + re (c) 
    $$x_{1} = i \left(- \frac{\left(\operatorname{re}{\left(c\right)} + 6\right) \operatorname{im}{\left(c\right)}}{\left(\operatorname{re}{\left(c\right)}\right)^{2} + \left(\operatorname{im}{\left(c\right)}\right)^{2}} + \frac{\operatorname{re}{\left(c\right)} \operatorname{im}{\left(c\right)}}{\left(\operatorname{re}{\left(c\right)}\right)^{2} + \left(\operatorname{im}{\left(c\right)}\right)^{2}}\right) + \frac{\left(\operatorname{re}{\left(c\right)} + 6\right) \operatorname{re}{\left(c\right)}}{\left(\operatorname{re}{\left(c\right)}\right)^{2} + \left(\operatorname{im}{\left(c\right)}\right)^{2}} + \frac{\left(\operatorname{im}{\left(c\right)}\right)^{2}}{\left(\operatorname{re}{\left(c\right)}\right)^{2} + \left(\operatorname{im}{\left(c\right)}\right)^{2}}$$
    Сумма и произведение корней [src]
    сумма
                                                     2                           
      /  im(c)*re(c)     (6 + re(c))*im(c)\        im (c)       (6 + re(c))*re(c)
    I*|--------------- - -----------------| + --------------- + -----------------
      |  2        2         2        2    |     2        2         2        2    
      \im (c) + re (c)    im (c) + re (c) /   im (c) + re (c)    im (c) + re (c) 
    $$i \left(- \frac{\left(\operatorname{re}{\left(c\right)} + 6\right) \operatorname{im}{\left(c\right)}}{\left(\operatorname{re}{\left(c\right)}\right)^{2} + \left(\operatorname{im}{\left(c\right)}\right)^{2}} + \frac{\operatorname{re}{\left(c\right)} \operatorname{im}{\left(c\right)}}{\left(\operatorname{re}{\left(c\right)}\right)^{2} + \left(\operatorname{im}{\left(c\right)}\right)^{2}}\right) + \frac{\left(\operatorname{re}{\left(c\right)} + 6\right) \operatorname{re}{\left(c\right)}}{\left(\operatorname{re}{\left(c\right)}\right)^{2} + \left(\operatorname{im}{\left(c\right)}\right)^{2}} + \frac{\left(\operatorname{im}{\left(c\right)}\right)^{2}}{\left(\operatorname{re}{\left(c\right)}\right)^{2} + \left(\operatorname{im}{\left(c\right)}\right)^{2}}$$
    =
                                                     2                           
      /  im(c)*re(c)     (6 + re(c))*im(c)\        im (c)       (6 + re(c))*re(c)
    I*|--------------- - -----------------| + --------------- + -----------------
      |  2        2         2        2    |     2        2         2        2    
      \im (c) + re (c)    im (c) + re (c) /   im (c) + re (c)    im (c) + re (c) 
    $$i \left(- \frac{\left(\operatorname{re}{\left(c\right)} + 6\right) \operatorname{im}{\left(c\right)}}{\left(\operatorname{re}{\left(c\right)}\right)^{2} + \left(\operatorname{im}{\left(c\right)}\right)^{2}} + \frac{\operatorname{re}{\left(c\right)} \operatorname{im}{\left(c\right)}}{\left(\operatorname{re}{\left(c\right)}\right)^{2} + \left(\operatorname{im}{\left(c\right)}\right)^{2}}\right) + \frac{\left(\operatorname{re}{\left(c\right)} + 6\right) \operatorname{re}{\left(c\right)}}{\left(\operatorname{re}{\left(c\right)}\right)^{2} + \left(\operatorname{im}{\left(c\right)}\right)^{2}} + \frac{\left(\operatorname{im}{\left(c\right)}\right)^{2}}{\left(\operatorname{re}{\left(c\right)}\right)^{2} + \left(\operatorname{im}{\left(c\right)}\right)^{2}}$$
    произведение
                                                     2                           
      /  im(c)*re(c)     (6 + re(c))*im(c)\        im (c)       (6 + re(c))*re(c)
    I*|--------------- - -----------------| + --------------- + -----------------
      |  2        2         2        2    |     2        2         2        2    
      \im (c) + re (c)    im (c) + re (c) /   im (c) + re (c)    im (c) + re (c) 
    $$i \left(- \frac{\left(\operatorname{re}{\left(c\right)} + 6\right) \operatorname{im}{\left(c\right)}}{\left(\operatorname{re}{\left(c\right)}\right)^{2} + \left(\operatorname{im}{\left(c\right)}\right)^{2}} + \frac{\operatorname{re}{\left(c\right)} \operatorname{im}{\left(c\right)}}{\left(\operatorname{re}{\left(c\right)}\right)^{2} + \left(\operatorname{im}{\left(c\right)}\right)^{2}}\right) + \frac{\left(\operatorname{re}{\left(c\right)} + 6\right) \operatorname{re}{\left(c\right)}}{\left(\operatorname{re}{\left(c\right)}\right)^{2} + \left(\operatorname{im}{\left(c\right)}\right)^{2}} + \frac{\left(\operatorname{im}{\left(c\right)}\right)^{2}}{\left(\operatorname{re}{\left(c\right)}\right)^{2} + \left(\operatorname{im}{\left(c\right)}\right)^{2}}$$
    =
      2                                   
    im (c) + (6 + re(c))*re(c) - 6*I*im(c)
    --------------------------------------
                 2        2               
               im (c) + re (c)            
    $$\frac{\left(\operatorname{re}{\left(c\right)} + 6\right) \operatorname{re}{\left(c\right)} + \left(\operatorname{im}{\left(c\right)}\right)^{2} - 6 i \operatorname{im}{\left(c\right)}}{\left(\operatorname{re}{\left(c\right)}\right)^{2} + \left(\operatorname{im}{\left(c\right)}\right)^{2}}$$
    Решение параметрического уравнения
    Дано уравнение с параметром:
    $$c x = c + 6$$
    Коэффициент при x равен
    $$c$$
    тогда возможные случаи для c :
    $$c < 0$$
    $$c = 0$$
    Рассмотри все случаи подробнее:
    При
    $$c < 0$$
    уравнение будет
    $$- x - 5 = 0$$
    его решение
    $$x = -5$$
    При
    $$c = 0$$
    уравнение будет
    $$-6 = 0$$
    его решение
    нет решений