2
/ (4 - 7*re(a))*im(a) 7*(2 + re(a))*im(a) \ 7*im (a) (2 + re(a))*(4 - 7*re(a))
x1 = I*|- --------------------- - ---------------------| - --------------------- + -------------------------
| 2 2 2 2 | 2 2 2 2
\ (2 + re(a)) + im (a) (2 + re(a)) + im (a)/ (2 + re(a)) + im (a) (2 + re(a)) + im (a)
$$x_{1} = \frac{\left(4 - 7 \operatorname{re}{\left(a\right)}\right) \left(\operatorname{re}{\left(a\right)} + 2\right)}{\left(\operatorname{re}{\left(a\right)} + 2\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} + i \left(- \frac{\left(4 - 7 \operatorname{re}{\left(a\right)}\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)} + 2\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} - \frac{7 \left(\operatorname{re}{\left(a\right)} + 2\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)} + 2\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}\right) - \frac{7 \left(\operatorname{im}{\left(a\right)}\right)^{2}}{\left(\operatorname{re}{\left(a\right)} + 2\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}$$
Сумма и произведение корней
[src] 2
/ (4 - 7*re(a))*im(a) 7*(2 + re(a))*im(a) \ 7*im (a) (2 + re(a))*(4 - 7*re(a))
I*|- --------------------- - ---------------------| - --------------------- + -------------------------
| 2 2 2 2 | 2 2 2 2
\ (2 + re(a)) + im (a) (2 + re(a)) + im (a)/ (2 + re(a)) + im (a) (2 + re(a)) + im (a)
$$\frac{\left(4 - 7 \operatorname{re}{\left(a\right)}\right) \left(\operatorname{re}{\left(a\right)} + 2\right)}{\left(\operatorname{re}{\left(a\right)} + 2\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} + i \left(- \frac{\left(4 - 7 \operatorname{re}{\left(a\right)}\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)} + 2\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} - \frac{7 \left(\operatorname{re}{\left(a\right)} + 2\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)} + 2\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}\right) - \frac{7 \left(\operatorname{im}{\left(a\right)}\right)^{2}}{\left(\operatorname{re}{\left(a\right)} + 2\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}$$
2
/ (4 - 7*re(a))*im(a) 7*(2 + re(a))*im(a) \ 7*im (a) (2 + re(a))*(4 - 7*re(a))
I*|- --------------------- - ---------------------| - --------------------- + -------------------------
| 2 2 2 2 | 2 2 2 2
\ (2 + re(a)) + im (a) (2 + re(a)) + im (a)/ (2 + re(a)) + im (a) (2 + re(a)) + im (a)
$$\frac{\left(4 - 7 \operatorname{re}{\left(a\right)}\right) \left(\operatorname{re}{\left(a\right)} + 2\right)}{\left(\operatorname{re}{\left(a\right)} + 2\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} + i \left(- \frac{\left(4 - 7 \operatorname{re}{\left(a\right)}\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)} + 2\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} - \frac{7 \left(\operatorname{re}{\left(a\right)} + 2\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)} + 2\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}\right) - \frac{7 \left(\operatorname{im}{\left(a\right)}\right)^{2}}{\left(\operatorname{re}{\left(a\right)} + 2\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}$$
2
/ (4 - 7*re(a))*im(a) 7*(2 + re(a))*im(a) \ 7*im (a) (2 + re(a))*(4 - 7*re(a))
I*|- --------------------- - ---------------------| - --------------------- + -------------------------
| 2 2 2 2 | 2 2 2 2
\ (2 + re(a)) + im (a) (2 + re(a)) + im (a)/ (2 + re(a)) + im (a) (2 + re(a)) + im (a)
$$\frac{\left(4 - 7 \operatorname{re}{\left(a\right)}\right) \left(\operatorname{re}{\left(a\right)} + 2\right)}{\left(\operatorname{re}{\left(a\right)} + 2\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} + i \left(- \frac{\left(4 - 7 \operatorname{re}{\left(a\right)}\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)} + 2\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} - \frac{7 \left(\operatorname{re}{\left(a\right)} + 2\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)} + 2\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}\right) - \frac{7 \left(\operatorname{im}{\left(a\right)}\right)^{2}}{\left(\operatorname{re}{\left(a\right)} + 2\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}$$
/ 2 \
-\7*im (a) + (-4 + 7*re(a))*(2 + re(a)) + 18*I*im(a)/
------------------------------------------------------
2 2
(2 + re(a)) + im (a)
$$- \frac{\left(\operatorname{re}{\left(a\right)} + 2\right) \left(7 \operatorname{re}{\left(a\right)} - 4\right) + 7 \left(\operatorname{im}{\left(a\right)}\right)^{2} + 18 i \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)} + 2\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}$$
Решение параметрического уравнения
Дано уравнение с параметром:
$$- a x + 4 = 7 a + 2 x$$
Коэффициент при x равен
$$- a - 2$$
тогда возможные случаи для a :
$$a < -2$$
$$a = -2$$
Рассмотри все случаи подробнее:
При
$$a < -2$$
уравнение будет
$$x + 25 = 0$$
его решение
$$x = -25$$
При
$$a = -2$$
уравнение будет
$$18 = 0$$
его решение
нет решений