Дано уравнение 4x3+4=0 Т.к. степень в ур-нии равна = 3 - не содержит чётного числа в числителе, то ур-ние будет иметь один действительный корень. Извлечём корень 3-й степени из обеих частей ур-ния: Получим: 343x3=3−4 или 232x=3−1⋅232 Раскрываем скобочки в левой части ур-ния
x*2^2/3 = (-1)^(1/3)*2^(2/3)
Раскрываем скобочки в правой части ур-ния
x*2^2/3 = -1^1/3*2^2/3
Разделим обе части ур-ния на 2^(2/3)
x = (-1)^(1/3)*2^(2/3) / (2^(2/3))
Получим ответ: x = (-1)^(1/3)
Остальные 2 корня(ей) являются комплексными. сделаем замену: z=x тогда ур-ние будет таким: z3=−1 Любое комплексное число можно представить так: z=reip подставляем в уравнение r3e3ip=−1 где r=1 - модуль комплексного числа Подставляем r: e3ip=−1 Используя формулу Эйлера, найдём корни для p isin(3p)+cos(3p)=−1 значит cos(3p)=−1 и sin(3p)=0 тогда p=32πN+3π где N=0,1,2,3,... Перебирая значения N и подставив p в формулу для z Значит, решением будет для z: z1=−1 z2=21−23i z3=21+23i делаем обратную замену z=x x=z