9+x^2=6x (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: 9+x^2=6x

    Решение

    Вы ввели [src]
         2      
    9 + x  = 6*x
    x2+9=6xx^{2} + 9 = 6 x
    Подробное решение
    Перенесём правую часть уравнения в
    левую часть уравнения со знаком минус.

    Уравнение превратится из
    x2+9=6xx^{2} + 9 = 6 x
    в
    6x+(x2+9)=0- 6 x + \left(x^{2} + 9\right) = 0
    Это уравнение вида
    a*x^2 + b*x + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    x1=Db2ax_{1} = \frac{\sqrt{D} - b}{2 a}
    x2=Db2ax_{2} = \frac{- \sqrt{D} - b}{2 a}
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    a=1a = 1
    b=6b = -6
    c=9c = 9
    , то
    D = b^2 - 4 * a * c = 

    (-6)^2 - 4 * (1) * (9) = 0

    Т.к. D = 0, то корень всего один.
    x = -b/2a = --6/2/(1)

    x1=3x_{1} = 3
    График
    02468-6-4-21012-250250
    Быстрый ответ [src]
    x1 = 3
    x1=3x_{1} = 3
    Сумма и произведение корней [src]
    сумма
    0 + 3
    0+30 + 3
    =
    3
    33
    произведение
    1*3
    131 \cdot 3
    =
    3
    33
    Теорема Виета
    это приведённое квадратное уравнение
    px+q+x2=0p x + q + x^{2} = 0
    где
    p=bap = \frac{b}{a}
    p=6p = -6
    q=caq = \frac{c}{a}
    q=9q = 9
    Формулы Виета
    x1+x2=px_{1} + x_{2} = - p
    x1x2=qx_{1} x_{2} = q
    x1+x2=6x_{1} + x_{2} = 6
    x1x2=9x_{1} x_{2} = 9
    Численный ответ [src]
    x1 = 3.0
    График
    9+x^2=6x (уравнение) /media/krcore-image-pods/hash/equation/4/d6/8124da1774f150f38fac1844bf6a8.png