9^sin(x)=3 (уравнение) Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: 9^sin(x)=3
Решение
Подробное решение
Дано уравнение9 sin ( x ) = 3 9^{\sin{\left(x \right)}} = 3 9 s i n ( x ) = 3 преобразуем9 sin ( x ) − 3 = 0 9^{\sin{\left(x \right)}} - 3 = 0 9 s i n ( x ) − 3 = 0 9 sin ( x ) − 3 = 0 9^{\sin{\left(x \right)}} - 3 = 0 9 s i n ( x ) − 3 = 0 Сделаем заменуw = sin ( x ) w = \sin{\left(x \right)} w = sin ( x ) 9 w − 3 = 0 9^{w} - 3 = 0 9 w − 3 = 0 или9 w − 3 = 0 9^{w} - 3 = 0 9 w − 3 = 0 или9 w = 3 9^{w} = 3 9 w = 3 или9 w = 3 9^{w} = 3 9 w = 3 - это простейшее показательное ур-ние Сделаем заменуv = 9 w v = 9^{w} v = 9 w получимv − 3 = 0 v - 3 = 0 v − 3 = 0 илиv − 3 = 0 v - 3 = 0 v − 3 = 0 Переносим свободные слагаемые (без v) из левой части в правую, получим:v = 3 v = 3 v = 3 Получим ответ: v = 3 делаем обратную замену9 w = v 9^{w} = v 9 w = v илиw = log ( v ) log ( 9 ) w = \frac{\log{\left(v \right)}}{\log{\left(9 \right)}} w = log ( 9 ) log ( v ) Тогда, окончательный ответw 1 = log ( 3 ) log ( 9 ) = 1 2 w_{1} = \frac{\log{\left(3 \right)}}{\log{\left(9 \right)}} = \frac{1}{2} w 1 = log ( 9 ) log ( 3 ) = 2 1 делаем обратную заменуsin ( x ) = w \sin{\left(x \right)} = w sin ( x ) = w Дано уравнениеsin ( x ) = w \sin{\left(x \right)} = w sin ( x ) = w - это простейшее тригонометрическое ур-ние Это ур-ние преобразуется вx = 2 π n + asin ( w ) x = 2 \pi n + \operatorname{asin}{\left(w \right)} x = 2 πn + asin ( w ) x = 2 π n − asin ( w ) + π x = 2 \pi n - \operatorname{asin}{\left(w \right)} + \pi x = 2 πn − asin ( w ) + π Илиx = 2 π n + asin ( w ) x = 2 \pi n + \operatorname{asin}{\left(w \right)} x = 2 πn + asin ( w ) x = 2 π n − asin ( w ) + π x = 2 \pi n - \operatorname{asin}{\left(w \right)} + \pi x = 2 πn − asin ( w ) + π , где n - любое целое число подставляем w:x 1 = 2 π n + asin ( w 1 ) x_{1} = 2 \pi n + \operatorname{asin}{\left(w_{1} \right)} x 1 = 2 πn + asin ( w 1 ) x 1 = 2 π n + asin ( 1 2 ) x_{1} = 2 \pi n + \operatorname{asin}{\left(\frac{1}{2} \right)} x 1 = 2 πn + asin ( 2 1 ) x 1 = 2 π n + π 6 x_{1} = 2 \pi n + \frac{\pi}{6} x 1 = 2 πn + 6 π x 2 = 2 π n − asin ( w 1 ) + π x_{2} = 2 \pi n - \operatorname{asin}{\left(w_{1} \right)} + \pi x 2 = 2 πn − asin ( w 1 ) + π x 2 = 2 π n − asin ( 1 2 ) + π x_{2} = 2 \pi n - \operatorname{asin}{\left(\frac{1}{2} \right)} + \pi x 2 = 2 πn − asin ( 2 1 ) + π x 2 = 2 π n + 5 π 6 x_{2} = 2 \pi n + \frac{5 \pi}{6} x 2 = 2 πn + 6 5 π
График
0 -80 -60 -40 -20 20 40 60 80 -100 100 0 10
x 1 = π 6 x_{1} = \frac{\pi}{6} x 1 = 6 π x 2 = 5 π 6 x_{2} = \frac{5 \pi}{6} x 2 = 6 5 π / /1 pi*I \\ / /1 pi*I \\
x3 = pi - re|asin|- + ------|| - I*im|asin|- + ------||
\ \2 log(3)// \ \2 log(3)// x 3 = − re ( asin ( 1 2 + i π log ( 3 ) ) ) + π − i im ( asin ( 1 2 + i π log ( 3 ) ) ) x_{3} = - \operatorname{re}{\left(\operatorname{asin}{\left(\frac{1}{2} + \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{1}{2} + \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)} x 3 = − re ( asin ( 2 1 + log ( 3 ) iπ ) ) + π − i im ( asin ( 2 1 + log ( 3 ) iπ ) ) / /1 pi*I \\ / /1 pi*I \\
x4 = I*im|asin|- + ------|| + re|asin|- + ------||
\ \2 log(3)// \ \2 log(3)// x 4 = re ( asin ( 1 2 + i π log ( 3 ) ) ) + i im ( asin ( 1 2 + i π log ( 3 ) ) ) x_{4} = \operatorname{re}{\left(\operatorname{asin}{\left(\frac{1}{2} + \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{1}{2} + \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)} x 4 = re ( asin ( 2 1 + log ( 3 ) iπ ) ) + i im ( asin ( 2 1 + log ( 3 ) iπ ) )
Сумма и произведение корней
[src] pi 5*pi / /1 pi*I \\ / /1 pi*I \\ / /1 pi*I \\ / /1 pi*I \\
0 + -- + ---- + pi - re|asin|- + ------|| - I*im|asin|- + ------|| + I*im|asin|- + ------|| + re|asin|- + ------||
6 6 \ \2 log(3)// \ \2 log(3)// \ \2 log(3)// \ \2 log(3)// ( ( ( 0 + π 6 ) + 5 π 6 ) − ( − π + re ( asin ( 1 2 + i π log ( 3 ) ) ) + i im ( asin ( 1 2 + i π log ( 3 ) ) ) ) ) + ( re ( asin ( 1 2 + i π log ( 3 ) ) ) + i im ( asin ( 1 2 + i π log ( 3 ) ) ) ) \left(\left(\left(0 + \frac{\pi}{6}\right) + \frac{5 \pi}{6}\right) - \left(- \pi + \operatorname{re}{\left(\operatorname{asin}{\left(\frac{1}{2} + \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{1}{2} + \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)}\right)\right) + \left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{1}{2} + \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{1}{2} + \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)}\right) ( ( ( 0 + 6 π ) + 6 5 π ) − ( − π + re ( asin ( 2 1 + log ( 3 ) iπ ) ) + i im ( asin ( 2 1 + log ( 3 ) iπ ) ) ) ) + ( re ( asin ( 2 1 + log ( 3 ) iπ ) ) + i im ( asin ( 2 1 + log ( 3 ) iπ ) ) ) pi 5*pi / / /1 pi*I \\ / /1 pi*I \\\ / / /1 pi*I \\ / /1 pi*I \\\
1*--*----*|pi - re|asin|- + ------|| - I*im|asin|- + ------|||*|I*im|asin|- + ------|| + re|asin|- + ------|||
6 6 \ \ \2 log(3)// \ \2 log(3)/// \ \ \2 log(3)// \ \2 log(3)/// 5 π 6 ⋅ 1 π 6 ( − re ( asin ( 1 2 + i π log ( 3 ) ) ) + π − i im ( asin ( 1 2 + i π log ( 3 ) ) ) ) ( re ( asin ( 1 2 + i π log ( 3 ) ) ) + i im ( asin ( 1 2 + i π log ( 3 ) ) ) ) \frac{5 \pi}{6} \cdot 1 \frac{\pi}{6} \left(- \operatorname{re}{\left(\operatorname{asin}{\left(\frac{1}{2} + \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{1}{2} + \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{1}{2} + \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{1}{2} + \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)}\right) 6 5 π ⋅ 1 6 π ( − re ( asin ( 2 1 + log ( 3 ) iπ ) ) + π − i im ( asin ( 2 1 + log ( 3 ) iπ ) ) ) ( re ( asin ( 2 1 + log ( 3 ) iπ ) ) + i im ( asin ( 2 1 + log ( 3 ) iπ ) ) ) 2 / / /2*pi*I + log(3)\\ / /2*pi*I + log(3)\\\ / / /2*pi*I + log(3)\\ / /2*pi*I + log(3)\\\
-5*pi *|I*im|asin|---------------|| + re|asin|---------------|||*|-pi + I*im|asin|---------------|| + re|asin|---------------|||
\ \ \ 2*log(3) // \ \ 2*log(3) /// \ \ \ 2*log(3) // \ \ 2*log(3) ///
--------------------------------------------------------------------------------------------------------------------------------
36 − 5 π 2 ( re ( asin ( log ( 3 ) + 2 i π 2 log ( 3 ) ) ) + i im ( asin ( log ( 3 ) + 2 i π 2 log ( 3 ) ) ) ) ( − π + re ( asin ( log ( 3 ) + 2 i π 2 log ( 3 ) ) ) + i im ( asin ( log ( 3 ) + 2 i π 2 log ( 3 ) ) ) ) 36 - \frac{5 \pi^{2} \left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{\log{\left(3 \right)} + 2 i \pi}{2 \log{\left(3 \right)}} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{\log{\left(3 \right)} + 2 i \pi}{2 \log{\left(3 \right)}} \right)}\right)}\right) \left(- \pi + \operatorname{re}{\left(\operatorname{asin}{\left(\frac{\log{\left(3 \right)} + 2 i \pi}{2 \log{\left(3 \right)}} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{\log{\left(3 \right)} + 2 i \pi}{2 \log{\left(3 \right)}} \right)}\right)}\right)}{36} − 36 5 π 2 ( re ( asin ( 2 l o g ( 3 ) l o g ( 3 ) + 2 iπ ) ) + i im ( asin ( 2 l o g ( 3 ) l o g ( 3 ) + 2 iπ ) ) ) ( − π + re ( asin ( 2 l o g ( 3 ) l o g ( 3 ) + 2 iπ ) ) + i im ( asin ( 2 l o g ( 3 ) l o g ( 3 ) + 2 iπ ) ) )