19*4^x-5*2^x+2+1=0 (уравнение) Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: 19*4^x-5*2^x+2+1=0
Решение
Подробное решение
Дано уравнение:− 5 ⋅ 2 x + 19 ⋅ 4 x + 1 + 2 = 0 - 5 \cdot 2^{x} + 19 \cdot 4^{x} + 1 + 2 = 0 − 5 ⋅ 2 x + 19 ⋅ 4 x + 1 + 2 = 0 или( − 5 ⋅ 2 x + 19 ⋅ 4 x + 1 + 2 ) + 0 = 0 \left(- 5 \cdot 2^{x} + 19 \cdot 4^{x} + 1 + 2\right) + 0 = 0 ( − 5 ⋅ 2 x + 19 ⋅ 4 x + 1 + 2 ) + 0 = 0 Сделаем заменуv = 2 x v = 2^{x} v = 2 x получим19 v 2 − 5 v + 3 = 0 19 v^{2} - 5 v + 3 = 0 19 v 2 − 5 v + 3 = 0 или19 v 2 − 5 v + 3 = 0 19 v^{2} - 5 v + 3 = 0 19 v 2 − 5 v + 3 = 0 Это уравнение видаa*v^2 + b*v + c = 0 Квадратное уравнение можно решить с помощью дискриминанта. Корни квадратного уравнения:v 1 = D − b 2 a v_{1} = \frac{\sqrt{D} - b}{2 a} v 1 = 2 a D − b v 2 = − D − b 2 a v_{2} = \frac{- \sqrt{D} - b}{2 a} v 2 = 2 a − D − b где D = b^2 - 4*a*c - это дискриминант. Т.к.a = 19 a = 19 a = 19 b = − 5 b = -5 b = − 5 c = 3 c = 3 c = 3 , тоD = b^2 - 4 * a * c = (-5)^2 - 4 * (19) * (3) = -203 Т.к. D < 0, то уравнение не имеет вещественных корней, но комплексные корни имеются.v1 = (-b + sqrt(D)) / (2*a) v2 = (-b - sqrt(D)) / (2*a) илиv 1 = 5 38 + 203 i 38 v_{1} = \frac{5}{38} + \frac{\sqrt{203} i}{38} v 1 = 38 5 + 38 203 i Упростить v 2 = 5 38 − 203 i 38 v_{2} = \frac{5}{38} - \frac{\sqrt{203} i}{38} v 2 = 38 5 − 38 203 i Упростить делаем обратную замену2 x = v 2^{x} = v 2 x = v илиx = log ( v ) log ( 2 ) x = \frac{\log{\left(v \right)}}{\log{\left(2 \right)}} x = log ( 2 ) log ( v ) Тогда, окончательный ответx 1 = log ( 5 38 − 203 i 38 ) log ( 2 ) = log ( 5 38 − 203 i 38 ) log ( 2 ) x_{1} = \frac{\log{\left(\frac{5}{38} - \frac{\sqrt{203} i}{38} \right)}}{\log{\left(2 \right)}} = \frac{\log{\left(\frac{5}{38} - \frac{\sqrt{203} i}{38} \right)}}{\log{\left(2 \right)}} x 1 = log ( 2 ) log ( 38 5 − 38 203 i ) = log ( 2 ) log ( 38 5 − 38 203 i ) x 2 = log ( 5 38 + 203 i 38 ) log ( 2 ) = log ( 5 38 + 203 i 38 ) log ( 2 ) x_{2} = \frac{\log{\left(\frac{5}{38} + \frac{\sqrt{203} i}{38} \right)}}{\log{\left(2 \right)}} = \frac{\log{\left(\frac{5}{38} + \frac{\sqrt{203} i}{38} \right)}}{\log{\left(2 \right)}} x 2 = log ( 2 ) log ( 38 5 + 38 203 i ) = log ( 2 ) log ( 38 5 + 38 203 i )
График
-15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 20
/ ____\ / _____\
|\/ 57 | |\/ 203 |
log|------| I*atan|-------|
\ 19 / \ 5 /
x1 = ----------- - ---------------
log(2) log(2) x 1 = log ( 57 19 ) log ( 2 ) − i atan ( 203 5 ) log ( 2 ) x_{1} = \frac{\log{\left(\frac{\sqrt{57}}{19} \right)}}{\log{\left(2 \right)}} - \frac{i \operatorname{atan}{\left(\frac{\sqrt{203}}{5} \right)}}{\log{\left(2 \right)}} x 1 = log ( 2 ) log ( 19 57 ) − log ( 2 ) i atan ( 5 203 ) / ____\ / _____\
|\/ 57 | |\/ 203 |
log|------| I*atan|-------|
\ 19 / \ 5 /
x2 = ----------- + ---------------
log(2) log(2) x 2 = log ( 57 19 ) log ( 2 ) + i atan ( 203 5 ) log ( 2 ) x_{2} = \frac{\log{\left(\frac{\sqrt{57}}{19} \right)}}{\log{\left(2 \right)}} + \frac{i \operatorname{atan}{\left(\frac{\sqrt{203}}{5} \right)}}{\log{\left(2 \right)}} x 2 = log ( 2 ) log ( 19 57 ) + log ( 2 ) i atan ( 5 203 )
Сумма и произведение корней
[src] / ____\ / _____\ / ____\ / _____\
|\/ 57 | |\/ 203 | |\/ 57 | |\/ 203 |
log|------| I*atan|-------| log|------| I*atan|-------|
\ 19 / \ 5 / \ 19 / \ 5 /
0 + ----------- - --------------- + ----------- + ---------------
log(2) log(2) log(2) log(2) ( 0 + ( log ( 57 19 ) log ( 2 ) − i atan ( 203 5 ) log ( 2 ) ) ) + ( log ( 57 19 ) log ( 2 ) + i atan ( 203 5 ) log ( 2 ) ) \left(0 + \left(\frac{\log{\left(\frac{\sqrt{57}}{19} \right)}}{\log{\left(2 \right)}} - \frac{i \operatorname{atan}{\left(\frac{\sqrt{203}}{5} \right)}}{\log{\left(2 \right)}}\right)\right) + \left(\frac{\log{\left(\frac{\sqrt{57}}{19} \right)}}{\log{\left(2 \right)}} + \frac{i \operatorname{atan}{\left(\frac{\sqrt{203}}{5} \right)}}{\log{\left(2 \right)}}\right) 0 + log ( 2 ) log ( 19 57 ) − log ( 2 ) i atan ( 5 203 ) + log ( 2 ) log ( 19 57 ) + log ( 2 ) i atan ( 5 203 ) / ____\
|\/ 57 |
2*log|------|
\ 19 /
-------------
log(2) 2 log ( 57 19 ) log ( 2 ) \frac{2 \log{\left(\frac{\sqrt{57}}{19} \right)}}{\log{\left(2 \right)}} log ( 2 ) 2 log ( 19 57 ) / / ____\ / _____\\ / / ____\ / _____\\
| |\/ 57 | |\/ 203 || | |\/ 57 | |\/ 203 ||
|log|------| I*atan|-------|| |log|------| I*atan|-------||
| \ 19 / \ 5 /| | \ 19 / \ 5 /|
1*|----------- - ---------------|*|----------- + ---------------|
\ log(2) log(2) / \ log(2) log(2) / 1 ( log ( 57 19 ) log ( 2 ) − i atan ( 203 5 ) log ( 2 ) ) ( log ( 57 19 ) log ( 2 ) + i atan ( 203 5 ) log ( 2 ) ) 1 \left(\frac{\log{\left(\frac{\sqrt{57}}{19} \right)}}{\log{\left(2 \right)}} - \frac{i \operatorname{atan}{\left(\frac{\sqrt{203}}{5} \right)}}{\log{\left(2 \right)}}\right) \left(\frac{\log{\left(\frac{\sqrt{57}}{19} \right)}}{\log{\left(2 \right)}} + \frac{i \operatorname{atan}{\left(\frac{\sqrt{203}}{5} \right)}}{\log{\left(2 \right)}}\right) 1 log ( 2 ) log ( 19 57 ) − log ( 2 ) i atan ( 5 203 ) log ( 2 ) log ( 19 57 ) + log ( 2 ) i atan ( 5 203 ) / _____\ / log(130321)\ 2
2|\/ 203 | 2 log\57 / log (57)
atan |-------| + log (19) - ------------------ + --------
\ 5 / 4 4
---------------------------------------------------------
2
log (2) − log ( 5 7 log ( 130321 ) ) 4 + atan 2 ( 203 5 ) + log ( 57 ) 2 4 + log ( 19 ) 2 log ( 2 ) 2 \frac{- \frac{\log{\left(57^{\log{\left(130321 \right)}} \right)}}{4} + \operatorname{atan}^{2}{\left(\frac{\sqrt{203}}{5} \right)} + \frac{\log{\left(57 \right)}^{2}}{4} + \log{\left(19 \right)}^{2}}{\log{\left(2 \right)}^{2}} log ( 2 ) 2 − 4 l o g ( 5 7 l o g ( 130321 ) ) + atan 2 ( 5 203 ) + 4 l o g ( 57 ) 2 + log ( 19 ) 2 x1 = -1.33148250636121 - 1.77926449580286*i x2 = -1.33148250636121 + 1.77926449580286*i