24x-9=16x^2 (уравнение) Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: 24x-9=16x^2
Решение
Подробное решение
Перенесём правую часть уравнения в левую часть уравнения со знаком минус. Уравнение превратится из24 x − 9 = 16 x 2 24 x - 9 = 16 x^{2} 24 x − 9 = 16 x 2 в− 16 x 2 + ( 24 x − 9 ) = 0 - 16 x^{2} + \left(24 x - 9\right) = 0 − 16 x 2 + ( 24 x − 9 ) = 0 Это уравнение видаa*x^2 + b*x + c = 0 Квадратное уравнение можно решить с помощью дискриминанта. Корни квадратного уравнения:x 1 = D − b 2 a x_{1} = \frac{\sqrt{D} - b}{2 a} x 1 = 2 a D − b x 2 = − D − b 2 a x_{2} = \frac{- \sqrt{D} - b}{2 a} x 2 = 2 a − D − b где D = b^2 - 4*a*c - это дискриминант. Т.к.a = − 16 a = -16 a = − 16 b = 24 b = 24 b = 24 c = − 9 c = -9 c = − 9 , тоD = b^2 - 4 * a * c = (24)^2 - 4 * (-16) * (-9) = 0 Т.к. D = 0, то корень всего один.x = -b/2a = -24/2/(-16) x 1 = 3 4 x_{1} = \frac{3}{4} x 1 = 4 3 x 1 = 3 4 x_{1} = \frac{3}{4} x 1 = 4 3
Сумма и произведение корней
[src] 1 ⋅ 3 4 1 \cdot \frac{3}{4} 1 ⋅ 4 3
Теорема Виета
перепишем уравнение24 x − 9 = 16 x 2 24 x - 9 = 16 x^{2} 24 x − 9 = 16 x 2 изa x 2 + b x + c = 0 a x^{2} + b x + c = 0 a x 2 + b x + c = 0 как приведённое квадратное уравнениеx 2 + b x a + c a = 0 x^{2} + \frac{b x}{a} + \frac{c}{a} = 0 x 2 + a b x + a c = 0 x 2 − 3 x 2 + 9 16 = 0 x^{2} - \frac{3 x}{2} + \frac{9}{16} = 0 x 2 − 2 3 x + 16 9 = 0 p x + q + x 2 = 0 p x + q + x^{2} = 0 p x + q + x 2 = 0 гдеp = b a p = \frac{b}{a} p = a b p = − 3 2 p = - \frac{3}{2} p = − 2 3 q = c a q = \frac{c}{a} q = a c q = 9 16 q = \frac{9}{16} q = 16 9 Формулы Виетаx 1 + x 2 = − p x_{1} + x_{2} = - p x 1 + x 2 = − p x 1 x 2 = q x_{1} x_{2} = q x 1 x 2 = q x 1 + x 2 = 3 2 x_{1} + x_{2} = \frac{3}{2} x 1 + x 2 = 2 3 x 1 x 2 = 9 16 x_{1} x_{2} = \frac{9}{16} x 1 x 2 = 16 9