2+3x-x^3=0 (уравнение)
Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: 2+3x-x^3=0
Решение
Подробное решение
Дано уравнение:
$$- x^{3} + \left(3 x + 2\right) = 0$$
преобразуем
$$\left(3 x + \left(- x^{3} - 1\right)\right) + 3 = 0$$
или
$$\left(3 x + \left(- x^{3} + \left(-1\right)^{3}\right)\right) - -3 = 0$$
$$3 \left(x + 1\right) - \left(x^{3} - \left(-1\right)^{3}\right) = 0$$
$$- (x + 1) \left(\left(x^{2} - x\right) + \left(-1\right)^{2}\right) + 3 \left(x + 1\right) = 0$$
Вынесем общий множитель 1 + x за скобки
получим:
$$\left(3 - \left(\left(x^{2} - x\right) + \left(-1\right)^{2}\right)\right) \left(x + 1\right) = 0$$
или
$$\left(x + 1\right) \left(- x^{2} + x + 2\right) = 0$$
тогда:
$$x_{1} = -1$$
и также
получаем ур-ние
$$- x^{2} + x + 2 = 0$$
Это уравнение вида
a*x^2 + b*x + c = 0
Квадратное уравнение можно решить
с помощью дискриминанта.
Корни квадратного уравнения:
$$x_{2} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{3} = \frac{- \sqrt{D} - b}{2 a}$$
где D = b^2 - 4*a*c - это дискриминант.
Т.к.
$$a = -1$$
$$b = 1$$
$$c = 2$$
, то
D = b^2 - 4 * a * c =
(1)^2 - 4 * (-1) * (2) = 9
Т.к. D > 0, то уравнение имеет два корня.
x2 = (-b + sqrt(D)) / (2*a)
x3 = (-b - sqrt(D)) / (2*a)
или
$$x_{2} = -1$$
$$x_{3} = 2$$
Получаем окончательный ответ для 2 + 3*x - x^3 = 0:
$$x_{1} = -1$$
$$x_{2} = -1$$
$$x_{3} = 2$$