2^(4*x-28)=16 (уравнение) Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: 2^(4*x-28)=16
Решение
Подробное решение
Дано уравнение:2 4 x − 28 = 16 2^{4 x - 28} = 16 2 4 x − 28 = 16 или2 4 x − 28 − 16 = 0 2^{4 x - 28} - 16 = 0 2 4 x − 28 − 16 = 0 или1 6 x 268435456 = 16 \frac{16^{x}}{268435456} = 16 268435456 1 6 x = 16 или1 6 x = 4294967296 16^{x} = 4294967296 1 6 x = 4294967296 - это простейшее показательное ур-ние Сделаем заменуv = 1 6 x v = 16^{x} v = 1 6 x получимv − 4294967296 = 0 v - 4294967296 = 0 v − 4294967296 = 0 илиv − 4294967296 = 0 v - 4294967296 = 0 v − 4294967296 = 0 Переносим свободные слагаемые (без v) из левой части в правую, получим:v = 4294967296 v = 4294967296 v = 4294967296 Получим ответ: v = 4294967296 делаем обратную замену1 6 x = v 16^{x} = v 1 6 x = v илиx = log ( v ) log ( 16 ) x = \frac{\log{\left(v \right)}}{\log{\left(16 \right)}} x = log ( 16 ) log ( v ) Тогда, окончательный ответx 1 = log ( 4294967296 ) log ( 16 ) = 8 x_{1} = \frac{\log{\left(4294967296 \right)}}{\log{\left(16 \right)}} = 8 x 1 = log ( 16 ) log ( 4294967296 ) = 8
График
-2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 0 20000000000000
log(256) pi*I
x2 = -------- + ------
log(2) log(2) x 2 = log ( 256 ) log ( 2 ) + i π log ( 2 ) x_{2} = \frac{\log{\left(256 \right)}}{\log{\left(2 \right)}} + \frac{i \pi}{\log{\left(2 \right)}} x 2 = log ( 2 ) log ( 256 ) + log ( 2 ) iπ log(65536) pi*I
x3 = ---------- - --------
2*log(2) 2*log(2) x 3 = log ( 65536 ) 2 log ( 2 ) − i π 2 log ( 2 ) x_{3} = \frac{\log{\left(65536 \right)}}{2 \log{\left(2 \right)}} - \frac{i \pi}{2 \log{\left(2 \right)}} x 3 = 2 log ( 2 ) log ( 65536 ) − 2 log ( 2 ) iπ log(65536) pi*I
x4 = ---------- + --------
2*log(2) 2*log(2) x 4 = log ( 65536 ) 2 log ( 2 ) + i π 2 log ( 2 ) x_{4} = \frac{\log{\left(65536 \right)}}{2 \log{\left(2 \right)}} + \frac{i \pi}{2 \log{\left(2 \right)}} x 4 = 2 log ( 2 ) log ( 65536 ) + 2 log ( 2 ) iπ
Сумма и произведение корней
[src] log(256) pi*I log(65536) pi*I log(65536) pi*I
8 + -------- + ------ + ---------- - -------- + ---------- + --------
log(2) log(2) 2*log(2) 2*log(2) 2*log(2) 2*log(2) ( log ( 65536 ) 2 log ( 2 ) + i π 2 log ( 2 ) ) + ( ( log ( 65536 ) 2 log ( 2 ) − i π 2 log ( 2 ) ) + ( 8 + ( log ( 256 ) log ( 2 ) + i π log ( 2 ) ) ) ) \left(\frac{\log{\left(65536 \right)}}{2 \log{\left(2 \right)}} + \frac{i \pi}{2 \log{\left(2 \right)}}\right) + \left(\left(\frac{\log{\left(65536 \right)}}{2 \log{\left(2 \right)}} - \frac{i \pi}{2 \log{\left(2 \right)}}\right) + \left(8 + \left(\frac{\log{\left(256 \right)}}{\log{\left(2 \right)}} + \frac{i \pi}{\log{\left(2 \right)}}\right)\right)\right) ( 2 log ( 2 ) log ( 65536 ) + 2 log ( 2 ) iπ ) + ( ( 2 log ( 2 ) log ( 65536 ) − 2 log ( 2 ) iπ ) + ( 8 + ( log ( 2 ) log ( 256 ) + log ( 2 ) iπ ) ) ) log(256) log(65536) pi*I
8 + -------- + ---------- + ------
log(2) log(2) log(2) 8 + log ( 256 ) log ( 2 ) + log ( 65536 ) log ( 2 ) + i π log ( 2 ) 8 + \frac{\log{\left(256 \right)}}{\log{\left(2 \right)}} + \frac{\log{\left(65536 \right)}}{\log{\left(2 \right)}} + \frac{i \pi}{\log{\left(2 \right)}} 8 + log ( 2 ) log ( 256 ) + log ( 2 ) log ( 65536 ) + log ( 2 ) iπ /log(256) pi*I \ /log(65536) pi*I \ /log(65536) pi*I \
8*|-------- + ------|*|---------- - --------|*|---------- + --------|
\ log(2) log(2)/ \ 2*log(2) 2*log(2)/ \ 2*log(2) 2*log(2)/ 8 ( log ( 256 ) log ( 2 ) + i π log ( 2 ) ) ( log ( 65536 ) 2 log ( 2 ) − i π 2 log ( 2 ) ) ( log ( 65536 ) 2 log ( 2 ) + i π 2 log ( 2 ) ) 8 \left(\frac{\log{\left(256 \right)}}{\log{\left(2 \right)}} + \frac{i \pi}{\log{\left(2 \right)}}\right) \left(\frac{\log{\left(65536 \right)}}{2 \log{\left(2 \right)}} - \frac{i \pi}{2 \log{\left(2 \right)}}\right) \left(\frac{\log{\left(65536 \right)}}{2 \log{\left(2 \right)}} + \frac{i \pi}{2 \log{\left(2 \right)}}\right) 8 ( log ( 2 ) log ( 256 ) + log ( 2 ) iπ ) ( 2 log ( 2 ) log ( 65536 ) − 2 log ( 2 ) iπ ) ( 2 log ( 2 ) log ( 65536 ) + 2 log ( 2 ) iπ ) 2*(pi*I + log(256))*(pi*I + log(65536))*(-pi*I + log(65536))
------------------------------------------------------------
3
log (2) 2 ( log ( 256 ) + i π ) ( log ( 65536 ) − i π ) ( log ( 65536 ) + i π ) log ( 2 ) 3 \frac{2 \left(\log{\left(256 \right)} + i \pi\right) \left(\log{\left(65536 \right)} - i \pi\right) \left(\log{\left(65536 \right)} + i \pi\right)}{\log{\left(2 \right)}^{3}} log ( 2 ) 3 2 ( log ( 256 ) + iπ ) ( log ( 65536 ) − iπ ) ( log ( 65536 ) + iπ ) x2 = 8.0 + 4.53236014182719*i x3 = 8.0 - 2.2661800709136*i x4 = 8.0 + 2.2661800709136*i