Решите уравнение 2^(3*x) = 3 (2 в степени (3 умножить на х) равно 3) - Найдите корень уравнения подробно по-шагам. [Есть ответ!]

2^(3*x) = 3 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: 2^(3*x) = 3

    Решение

    Вы ввели [src]
     3*x    
    2    = 3
    $$2^{3 x} = 3$$
    Подробное решение
    Дано уравнение:
    $$2^{3 x} = 3$$
    или
    $$2^{3 x} - 3 = 0$$
    или
    $$8^{x} = 3$$
    или
    $$8^{x} = 3$$
    - это простейшее показательное ур-ние
    Сделаем замену
    $$v = 8^{x}$$
    получим
    $$v - 3 = 0$$
    или
    $$v - 3 = 0$$
    Переносим свободные слагаемые (без v)
    из левой части в правую, получим:
    $$v = 3$$
    Получим ответ: v = 3
    делаем обратную замену
    $$8^{x} = v$$
    или
    $$x = \frac{\log{\left(v \right)}}{\log{\left(8 \right)}}$$
    Тогда, окончательный ответ
    $$x_{1} = \frac{\log{\left(3 \right)}}{\log{\left(8 \right)}} = \frac{\log{\left(3 \right)}}{3 \log{\left(2 \right)}}$$
    График
    Быстрый ответ [src]
          log(3) 
    x1 = --------
         3*log(2)
    $$x_{1} = \frac{\log{\left(3 \right)}}{3 \log{\left(2 \right)}}$$
          log(3)     2*pi*I 
    x2 = -------- - --------
         3*log(2)   3*log(2)
    $$x_{2} = \frac{\log{\left(3 \right)}}{3 \log{\left(2 \right)}} - \frac{2 i \pi}{3 \log{\left(2 \right)}}$$
          log(3)     2*pi*I 
    x3 = -------- + --------
         3*log(2)   3*log(2)
    $$x_{3} = \frac{\log{\left(3 \right)}}{3 \log{\left(2 \right)}} + \frac{2 i \pi}{3 \log{\left(2 \right)}}$$
    Численный ответ [src]
    x1 = 0.528320833573719 - 3.0215734278848*i
    x2 = 0.528320833573719 + 3.0215734278848*i
    x3 = 0.528320833573719
    График
    2^(3*x) = 3 (уравнение) /media/krcore-image-pods/hash/equation/5/a6/a374cff7450d7ab89bc27e3ce8102.png