2^x=x (уравнение)
Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: 2^x=x
Решение
re(W(-log(2))) I*im(W(-log(2)))
x1 = - -------------- - ----------------
log(2) log(2)
$$x_{1} = - \frac{\operatorname{re}{\left(W\left(- \log{\left(2 \right)}\right)\right)}}{\log{\left(2 \right)}} - \frac{i \operatorname{im}{\left(W\left(- \log{\left(2 \right)}\right)\right)}}{\log{\left(2 \right)}}$$
Сумма и произведение корней
[src] re(W(-log(2))) I*im(W(-log(2)))
0 + - -------------- - ----------------
log(2) log(2)
$$0 - \left(\frac{\operatorname{re}{\left(W\left(- \log{\left(2 \right)}\right)\right)}}{\log{\left(2 \right)}} + \frac{i \operatorname{im}{\left(W\left(- \log{\left(2 \right)}\right)\right)}}{\log{\left(2 \right)}}\right)$$
re(W(-log(2))) I*im(W(-log(2)))
- -------------- - ----------------
log(2) log(2)
$$- \frac{\operatorname{re}{\left(W\left(- \log{\left(2 \right)}\right)\right)}}{\log{\left(2 \right)}} - \frac{i \operatorname{im}{\left(W\left(- \log{\left(2 \right)}\right)\right)}}{\log{\left(2 \right)}}$$
/ re(W(-log(2))) I*im(W(-log(2)))\
1*|- -------------- - ----------------|
\ log(2) log(2) /
$$1 \left(- \frac{\operatorname{re}{\left(W\left(- \log{\left(2 \right)}\right)\right)}}{\log{\left(2 \right)}} - \frac{i \operatorname{im}{\left(W\left(- \log{\left(2 \right)}\right)\right)}}{\log{\left(2 \right)}}\right)$$
-re(W(-log(2))) - I*im(W(-log(2)))
----------------------------------
log(2)
$$\frac{- \operatorname{re}{\left(W\left(- \log{\left(2 \right)}\right)\right)} - i \operatorname{im}{\left(W\left(- \log{\left(2 \right)}\right)\right)}}{\log{\left(2 \right)}}$$
x1 = 0.824678546142074 - 1.56743212384965*i