27*81^sinx-12*9^sinx+1=0 (уравнение) Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: 27*81^sinx-12*9^sinx+1=0
Решение
Подробное решение
Дано уравнение27 ⋅ 8 1 sin ( x ) − 12 ⋅ 9 sin ( x ) + 1 = 0 27 \cdot 81^{\sin{\left(x \right)}} - 12 \cdot 9^{\sin{\left(x \right)}} + 1 = 0 27 ⋅ 8 1 s i n ( x ) − 12 ⋅ 9 s i n ( x ) + 1 = 0 преобразуем27 ⋅ 3 4 sin ( x ) − 12 ⋅ 3 2 sin ( x ) + 1 = 0 27 \cdot 3^{4 \sin{\left(x \right)}} - 12 \cdot 3^{2 \sin{\left(x \right)}} + 1 = 0 27 ⋅ 3 4 s i n ( x ) − 12 ⋅ 3 2 s i n ( x ) + 1 = 0 ( 27 ⋅ 8 1 sin ( x ) − 12 ⋅ 9 sin ( x ) + 1 ) + 0 = 0 \left(27 \cdot 81^{\sin{\left(x \right)}} - 12 \cdot 9^{\sin{\left(x \right)}} + 1\right) + 0 = 0 ( 27 ⋅ 8 1 s i n ( x ) − 12 ⋅ 9 s i n ( x ) + 1 ) + 0 = 0 Сделаем заменуw = sin ( x ) w = \sin{\left(x \right)} w = sin ( x ) 27 ⋅ 8 1 w − 12 ⋅ 9 w + 1 = 0 27 \cdot 81^{w} - 12 \cdot 9^{w} + 1 = 0 27 ⋅ 8 1 w − 12 ⋅ 9 w + 1 = 0 или27 ⋅ 8 1 w − 12 ⋅ 9 w + 1 = 0 27 \cdot 81^{w} - 12 \cdot 9^{w} + 1 = 0 27 ⋅ 8 1 w − 12 ⋅ 9 w + 1 = 0 Сделаем заменуv = 9 w v = 9^{w} v = 9 w получим27 v 2 − 12 v + 1 = 0 27 v^{2} - 12 v + 1 = 0 27 v 2 − 12 v + 1 = 0 или27 v 2 − 12 v + 1 = 0 27 v^{2} - 12 v + 1 = 0 27 v 2 − 12 v + 1 = 0 Это уравнение видаa*v^2 + b*v + c = 0 Квадратное уравнение можно решить с помощью дискриминанта. Корни квадратного уравнения:v 1 = D − b 2 a v_{1} = \frac{\sqrt{D} - b}{2 a} v 1 = 2 a D − b v 2 = − D − b 2 a v_{2} = \frac{- \sqrt{D} - b}{2 a} v 2 = 2 a − D − b где D = b^2 - 4*a*c - это дискриминант. Т.к.a = 27 a = 27 a = 27 b = − 12 b = -12 b = − 12 c = 1 c = 1 c = 1 , тоD = b^2 - 4 * a * c = (-12)^2 - 4 * (27) * (1) = 36 Т.к. D > 0, то уравнение имеет два корня.v1 = (-b + sqrt(D)) / (2*a) v2 = (-b - sqrt(D)) / (2*a) илиv 1 = 1 3 v_{1} = \frac{1}{3} v 1 = 3 1 Упростить v 2 = 1 9 v_{2} = \frac{1}{9} v 2 = 9 1 Упростить делаем обратную замену9 w = v 9^{w} = v 9 w = v илиw = log ( v ) log ( 9 ) w = \frac{\log{\left(v \right)}}{\log{\left(9 \right)}} w = log ( 9 ) log ( v ) Тогда, окончательный ответw 1 = log ( 1 3 ) log ( 9 ) = − 1 2 w_{1} = \frac{\log{\left(\frac{1}{3} \right)}}{\log{\left(9 \right)}} = - \frac{1}{2} w 1 = log ( 9 ) log ( 3 1 ) = − 2 1 w 2 = log ( 1 9 ) log ( 9 ) = − 1 w_{2} = \frac{\log{\left(\frac{1}{9} \right)}}{\log{\left(9 \right)}} = -1 w 2 = log ( 9 ) log ( 9 1 ) = − 1 делаем обратную заменуsin ( x ) = w \sin{\left(x \right)} = w sin ( x ) = w Дано уравнениеsin ( x ) = w \sin{\left(x \right)} = w sin ( x ) = w - это простейшее тригонометрическое ур-ние Это ур-ние преобразуется вx = 2 π n + asin ( w ) x = 2 \pi n + \operatorname{asin}{\left(w \right)} x = 2 πn + asin ( w ) x = 2 π n − asin ( w ) + π x = 2 \pi n - \operatorname{asin}{\left(w \right)} + \pi x = 2 πn − asin ( w ) + π Илиx = 2 π n + asin ( w ) x = 2 \pi n + \operatorname{asin}{\left(w \right)} x = 2 πn + asin ( w ) x = 2 π n − asin ( w ) + π x = 2 \pi n - \operatorname{asin}{\left(w \right)} + \pi x = 2 πn − asin ( w ) + π , где n - любое целое число подставляем w:x 1 = 2 π n + asin ( w 1 ) x_{1} = 2 \pi n + \operatorname{asin}{\left(w_{1} \right)} x 1 = 2 πn + asin ( w 1 ) x 1 = 2 π n + asin ( − 1 2 ) x_{1} = 2 \pi n + \operatorname{asin}{\left(- \frac{1}{2} \right)} x 1 = 2 πn + asin ( − 2 1 ) x 1 = 2 π n − π 6 x_{1} = 2 \pi n - \frac{\pi}{6} x 1 = 2 πn − 6 π x 2 = 2 π n + asin ( w 2 ) x_{2} = 2 \pi n + \operatorname{asin}{\left(w_{2} \right)} x 2 = 2 πn + asin ( w 2 ) x 2 = 2 π n + asin ( − 1 ) x_{2} = 2 \pi n + \operatorname{asin}{\left(-1 \right)} x 2 = 2 πn + asin ( − 1 ) x 2 = 2 π n − π 2 x_{2} = 2 \pi n - \frac{\pi}{2} x 2 = 2 πn − 2 π x 3 = 2 π n − asin ( w 1 ) + π x_{3} = 2 \pi n - \operatorname{asin}{\left(w_{1} \right)} + \pi x 3 = 2 πn − asin ( w 1 ) + π x 3 = 2 π n − asin ( − 1 2 ) + π x_{3} = 2 \pi n - \operatorname{asin}{\left(- \frac{1}{2} \right)} + \pi x 3 = 2 πn − asin ( − 2 1 ) + π x 3 = 2 π n + 7 π 6 x_{3} = 2 \pi n + \frac{7 \pi}{6} x 3 = 2 πn + 6 7 π x 4 = 2 π n − asin ( w 2 ) + π x_{4} = 2 \pi n - \operatorname{asin}{\left(w_{2} \right)} + \pi x 4 = 2 πn − asin ( w 2 ) + π x 4 = 2 π n − asin ( − 1 ) + π x_{4} = 2 \pi n - \operatorname{asin}{\left(-1 \right)} + \pi x 4 = 2 πn − asin ( − 1 ) + π x 4 = 2 π n + 3 π 2 x_{4} = 2 \pi n + \frac{3 \pi}{2} x 4 = 2 πn + 2 3 π
График
0 -80 -60 -40 -20 20 40 60 80 -100 100 -2500 2500
x 1 = − π 2 x_{1} = - \frac{\pi}{2} x 1 = − 2 π x 2 = − π 6 x_{2} = - \frac{\pi}{6} x 2 = − 6 π x 3 = 7 π 6 x_{3} = \frac{7 \pi}{6} x 3 = 6 7 π x 4 = 3 π 2 x_{4} = \frac{3 \pi}{2} x 4 = 2 3 π / /1 pi*I \\ / /1 pi*I \\
x5 = pi + I*im|asin|- - ------|| + re|asin|- - ------||
\ \2 log(3)// \ \2 log(3)// x 5 = re ( asin ( 1 2 − i π log ( 3 ) ) ) + π + i im ( asin ( 1 2 − i π log ( 3 ) ) ) x_{5} = \operatorname{re}{\left(\operatorname{asin}{\left(\frac{1}{2} - \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)} + \pi + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{1}{2} - \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)} x 5 = re ( asin ( 2 1 − log ( 3 ) iπ ) ) + π + i im ( asin ( 2 1 − log ( 3 ) iπ ) ) / / pi*I \\ / / pi*I \\
x6 = pi + I*im|asin|1 - ------|| + re|asin|1 - ------||
\ \ log(3)// \ \ log(3)// x 6 = re ( asin ( 1 − i π log ( 3 ) ) ) + π + i im ( asin ( 1 − i π log ( 3 ) ) ) x_{6} = \operatorname{re}{\left(\operatorname{asin}{\left(1 - \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)} + \pi + i \operatorname{im}{\left(\operatorname{asin}{\left(1 - \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)} x 6 = re ( asin ( 1 − log ( 3 ) iπ ) ) + π + i im ( asin ( 1 − log ( 3 ) iπ ) ) / /1 pi*I \\ / /1 pi*I \\
x7 = - re|asin|- - ------|| - I*im|asin|- - ------||
\ \2 log(3)// \ \2 log(3)// x 7 = − re ( asin ( 1 2 − i π log ( 3 ) ) ) − i im ( asin ( 1 2 − i π log ( 3 ) ) ) x_{7} = - \operatorname{re}{\left(\operatorname{asin}{\left(\frac{1}{2} - \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)} - i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{1}{2} - \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)} x 7 = − re ( asin ( 2 1 − log ( 3 ) iπ ) ) − i im ( asin ( 2 1 − log ( 3 ) iπ ) ) / / pi*I \\ / / pi*I \\
x8 = - re|asin|1 - ------|| - I*im|asin|1 - ------||
\ \ log(3)// \ \ log(3)// x 8 = − re ( asin ( 1 − i π log ( 3 ) ) ) − i im ( asin ( 1 − i π log ( 3 ) ) ) x_{8} = - \operatorname{re}{\left(\operatorname{asin}{\left(1 - \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)} - i \operatorname{im}{\left(\operatorname{asin}{\left(1 - \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)} x 8 = − re ( asin ( 1 − log ( 3 ) iπ ) ) − i im ( asin ( 1 − log ( 3 ) iπ ) )
Сумма и произведение корней
[src] pi pi 7*pi 3*pi / /1 pi*I \\ / /1 pi*I \\ / / pi*I \\ / / pi*I \\ / /1 pi*I \\ / /1 pi*I \\ / / pi*I \\ / / pi*I \\
0 - -- - -- + ---- + ---- + pi + I*im|asin|- - ------|| + re|asin|- - ------|| + pi + I*im|asin|1 - ------|| + re|asin|1 - ------|| + - re|asin|- - ------|| - I*im|asin|- - ------|| + - re|asin|1 - ------|| - I*im|asin|1 - ------||
2 6 6 2 \ \2 log(3)// \ \2 log(3)// \ \ log(3)// \ \ log(3)// \ \2 log(3)// \ \2 log(3)// \ \ log(3)// \ \ log(3)// ( ( ( re ( asin ( 1 − i π log ( 3 ) ) ) + π + i im ( asin ( 1 − i π log ( 3 ) ) ) ) + ( ( ( ( ( − π 2 + 0 ) − π 6 ) + 7 π 6 ) + 3 π 2 ) + ( re ( asin ( 1 2 − i π log ( 3 ) ) ) + π + i im ( asin ( 1 2 − i π log ( 3 ) ) ) ) ) ) − ( re ( asin ( 1 2 − i π log ( 3 ) ) ) + i im ( asin ( 1 2 − i π log ( 3 ) ) ) ) ) − ( re ( asin ( 1 − i π log ( 3 ) ) ) + i im ( asin ( 1 − i π log ( 3 ) ) ) ) \left(\left(\left(\operatorname{re}{\left(\operatorname{asin}{\left(1 - \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)} + \pi + i \operatorname{im}{\left(\operatorname{asin}{\left(1 - \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)}\right) + \left(\left(\left(\left(\left(- \frac{\pi}{2} + 0\right) - \frac{\pi}{6}\right) + \frac{7 \pi}{6}\right) + \frac{3 \pi}{2}\right) + \left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{1}{2} - \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)} + \pi + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{1}{2} - \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)}\right)\right)\right) - \left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{1}{2} - \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{1}{2} - \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)}\right)\right) - \left(\operatorname{re}{\left(\operatorname{asin}{\left(1 - \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(1 - \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)}\right) ( ( ( re ( asin ( 1 − log ( 3 ) iπ ) ) + π + i im ( asin ( 1 − log ( 3 ) iπ ) ) ) + ( ( ( ( ( − 2 π + 0 ) − 6 π ) + 6 7 π ) + 2 3 π ) + ( re ( asin ( 2 1 − log ( 3 ) iπ ) ) + π + i im ( asin ( 2 1 − log ( 3 ) iπ ) ) ) ) ) − ( re ( asin ( 2 1 − log ( 3 ) iπ ) ) + i im ( asin ( 2 1 − log ( 3 ) iπ ) ) ) ) − ( re ( asin ( 1 − log ( 3 ) iπ ) ) + i im ( asin ( 1 − log ( 3 ) iπ ) ) ) -pi -pi 7*pi 3*pi / / /1 pi*I \\ / /1 pi*I \\\ / / / pi*I \\ / / pi*I \\\ / / /1 pi*I \\ / /1 pi*I \\\ / / / pi*I \\ / / pi*I \\\
1*----*----*----*----*|pi + I*im|asin|- - ------|| + re|asin|- - ------|||*|pi + I*im|asin|1 - ------|| + re|asin|1 - ------|||*|- re|asin|- - ------|| - I*im|asin|- - ------|||*|- re|asin|1 - ------|| - I*im|asin|1 - ------|||
2 6 6 2 \ \ \2 log(3)// \ \2 log(3)/// \ \ \ log(3)// \ \ log(3)/// \ \ \2 log(3)// \ \2 log(3)/// \ \ \ log(3)// \ \ log(3)/// 3 π 2 7 π 6 − π 6 ⋅ 1 ( − π 2 ) ( re ( asin ( 1 2 − i π log ( 3 ) ) ) + π + i im ( asin ( 1 2 − i π log ( 3 ) ) ) ) ( re ( asin ( 1 − i π log ( 3 ) ) ) + π + i im ( asin ( 1 − i π log ( 3 ) ) ) ) ( − re ( asin ( 1 2 − i π log ( 3 ) ) ) − i im ( asin ( 1 2 − i π log ( 3 ) ) ) ) ( − re ( asin ( 1 − i π log ( 3 ) ) ) − i im ( asin ( 1 − i π log ( 3 ) ) ) ) \frac{3 \pi}{2} \frac{7 \pi}{6} - \frac{\pi}{6} \cdot 1 \left(- \frac{\pi}{2}\right) \left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{1}{2} - \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)} + \pi + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{1}{2} - \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{asin}{\left(1 - \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)} + \pi + i \operatorname{im}{\left(\operatorname{asin}{\left(1 - \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)}\right) \left(- \operatorname{re}{\left(\operatorname{asin}{\left(\frac{1}{2} - \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)} - i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{1}{2} - \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)}\right) \left(- \operatorname{re}{\left(\operatorname{asin}{\left(1 - \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)} - i \operatorname{im}{\left(\operatorname{asin}{\left(1 - \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)}\right) 2 3 π 6 7 π − 6 π ⋅ 1 ( − 2 π ) ( re ( asin ( 2 1 − log ( 3 ) iπ ) ) + π + i im ( asin ( 2 1 − log ( 3 ) iπ ) ) ) ( re ( asin ( 1 − log ( 3 ) iπ ) ) + π + i im ( asin ( 1 − log ( 3 ) iπ ) ) ) ( − re ( asin ( 2 1 − log ( 3 ) iπ ) ) − i im ( asin ( 2 1 − log ( 3 ) iπ ) ) ) ( − re ( asin ( 1 − log ( 3 ) iπ ) ) − i im ( asin ( 1 − log ( 3 ) iπ ) ) ) 4 / / /-pi*I + log(3)\\ / /-pi*I + log(3)\\\ / / /-2*pi*I + log(3)\\ / /-2*pi*I + log(3)\\\ / / /-pi*I + log(3)\\ / /-pi*I + log(3)\\\ / / /-2*pi*I + log(3)\\ / /-2*pi*I + log(3)\\\
7*pi *|I*im|asin|--------------|| + re|asin|--------------|||*|I*im|asin|----------------|| + re|asin|----------------|||*|pi + I*im|asin|--------------|| + re|asin|--------------|||*|pi + I*im|asin|----------------|| + re|asin|----------------|||
\ \ \ log(3) // \ \ log(3) /// \ \ \ 2*log(3) // \ \ 2*log(3) /// \ \ \ log(3) // \ \ log(3) /// \ \ \ 2*log(3) // \ \ 2*log(3) ///
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
48 7 π 4 ( re ( asin ( log ( 3 ) − 2 i π 2 log ( 3 ) ) ) + i im ( asin ( log ( 3 ) − 2 i π 2 log ( 3 ) ) ) ) ( re ( asin ( log ( 3 ) − i π log ( 3 ) ) ) + i im ( asin ( log ( 3 ) − i π log ( 3 ) ) ) ) ( re ( asin ( log ( 3 ) − 2 i π 2 log ( 3 ) ) ) + π + i im ( asin ( log ( 3 ) − 2 i π 2 log ( 3 ) ) ) ) ( re ( asin ( log ( 3 ) − i π log ( 3 ) ) ) + π + i im ( asin ( log ( 3 ) − i π log ( 3 ) ) ) ) 48 \frac{7 \pi^{4} \left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{\log{\left(3 \right)} - 2 i \pi}{2 \log{\left(3 \right)}} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{\log{\left(3 \right)} - 2 i \pi}{2 \log{\left(3 \right)}} \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{\log{\left(3 \right)} - i \pi}{\log{\left(3 \right)}} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{\log{\left(3 \right)} - i \pi}{\log{\left(3 \right)}} \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{\log{\left(3 \right)} - 2 i \pi}{2 \log{\left(3 \right)}} \right)}\right)} + \pi + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{\log{\left(3 \right)} - 2 i \pi}{2 \log{\left(3 \right)}} \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{\log{\left(3 \right)} - i \pi}{\log{\left(3 \right)}} \right)}\right)} + \pi + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{\log{\left(3 \right)} - i \pi}{\log{\left(3 \right)}} \right)}\right)}\right)}{48} 48 7 π 4 ( re ( asin ( 2 l o g ( 3 ) l o g ( 3 ) − 2 iπ ) ) + i im ( asin ( 2 l o g ( 3 ) l o g ( 3 ) − 2 iπ ) ) ) ( re ( asin ( l o g ( 3 ) l o g ( 3 ) − iπ ) ) + i im ( asin ( l o g ( 3 ) l o g ( 3 ) − iπ ) ) ) ( re ( asin ( 2 l o g ( 3 ) l o g ( 3 ) − 2 iπ ) ) + π + i im ( asin ( 2 l o g ( 3 ) l o g ( 3 ) − 2 iπ ) ) ) ( re ( asin ( l o g ( 3 ) l o g ( 3 ) − iπ ) ) + π + i im ( asin ( l o g ( 3 ) l o g ( 3 ) − iπ ) ) )