27*81^sinx-12*9^sinx+1=0 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: 27*81^sinx-12*9^sinx+1=0

    Решение

    Вы ввели [src]
         sin(x)       sin(x)        
    27*81       - 12*9       + 1 = 0
    2781sin(x)129sin(x)+1=027 \cdot 81^{\sin{\left(x \right)}} - 12 \cdot 9^{\sin{\left(x \right)}} + 1 = 0
    Подробное решение
    Дано уравнение
    2781sin(x)129sin(x)+1=027 \cdot 81^{\sin{\left(x \right)}} - 12 \cdot 9^{\sin{\left(x \right)}} + 1 = 0
    преобразуем
    2734sin(x)1232sin(x)+1=027 \cdot 3^{4 \sin{\left(x \right)}} - 12 \cdot 3^{2 \sin{\left(x \right)}} + 1 = 0
    (2781sin(x)129sin(x)+1)+0=0\left(27 \cdot 81^{\sin{\left(x \right)}} - 12 \cdot 9^{\sin{\left(x \right)}} + 1\right) + 0 = 0
    Сделаем замену
    w=sin(x)w = \sin{\left(x \right)}
    2781w129w+1=027 \cdot 81^{w} - 12 \cdot 9^{w} + 1 = 0
    или
    2781w129w+1=027 \cdot 81^{w} - 12 \cdot 9^{w} + 1 = 0
    Сделаем замену
    v=9wv = 9^{w}
    получим
    27v212v+1=027 v^{2} - 12 v + 1 = 0
    или
    27v212v+1=027 v^{2} - 12 v + 1 = 0
    Это уравнение вида
    a*v^2 + b*v + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    v1=Db2av_{1} = \frac{\sqrt{D} - b}{2 a}
    v2=Db2av_{2} = \frac{- \sqrt{D} - b}{2 a}
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    a=27a = 27
    b=12b = -12
    c=1c = 1
    , то
    D = b^2 - 4 * a * c = 

    (-12)^2 - 4 * (27) * (1) = 36

    Т.к. D > 0, то уравнение имеет два корня.
    v1 = (-b + sqrt(D)) / (2*a)

    v2 = (-b - sqrt(D)) / (2*a)

    или
    v1=13v_{1} = \frac{1}{3}
    Упростить
    v2=19v_{2} = \frac{1}{9}
    Упростить
    делаем обратную замену
    9w=v9^{w} = v
    или
    w=log(v)log(9)w = \frac{\log{\left(v \right)}}{\log{\left(9 \right)}}
    Тогда, окончательный ответ
    w1=log(13)log(9)=12w_{1} = \frac{\log{\left(\frac{1}{3} \right)}}{\log{\left(9 \right)}} = - \frac{1}{2}
    w2=log(19)log(9)=1w_{2} = \frac{\log{\left(\frac{1}{9} \right)}}{\log{\left(9 \right)}} = -1
    делаем обратную замену
    sin(x)=w\sin{\left(x \right)} = w
    Дано уравнение
    sin(x)=w\sin{\left(x \right)} = w
    - это простейшее тригонометрическое ур-ние
    Это ур-ние преобразуется в
    x=2πn+asin(w)x = 2 \pi n + \operatorname{asin}{\left(w \right)}
    x=2πnasin(w)+πx = 2 \pi n - \operatorname{asin}{\left(w \right)} + \pi
    Или
    x=2πn+asin(w)x = 2 \pi n + \operatorname{asin}{\left(w \right)}
    x=2πnasin(w)+πx = 2 \pi n - \operatorname{asin}{\left(w \right)} + \pi
    , где n - любое целое число
    подставляем w:
    x1=2πn+asin(w1)x_{1} = 2 \pi n + \operatorname{asin}{\left(w_{1} \right)}
    x1=2πn+asin(12)x_{1} = 2 \pi n + \operatorname{asin}{\left(- \frac{1}{2} \right)}
    x1=2πnπ6x_{1} = 2 \pi n - \frac{\pi}{6}
    x2=2πn+asin(w2)x_{2} = 2 \pi n + \operatorname{asin}{\left(w_{2} \right)}
    x2=2πn+asin(1)x_{2} = 2 \pi n + \operatorname{asin}{\left(-1 \right)}
    x2=2πnπ2x_{2} = 2 \pi n - \frac{\pi}{2}
    x3=2πnasin(w1)+πx_{3} = 2 \pi n - \operatorname{asin}{\left(w_{1} \right)} + \pi
    x3=2πnasin(12)+πx_{3} = 2 \pi n - \operatorname{asin}{\left(- \frac{1}{2} \right)} + \pi
    x3=2πn+7π6x_{3} = 2 \pi n + \frac{7 \pi}{6}
    x4=2πnasin(w2)+πx_{4} = 2 \pi n - \operatorname{asin}{\left(w_{2} \right)} + \pi
    x4=2πnasin(1)+πx_{4} = 2 \pi n - \operatorname{asin}{\left(-1 \right)} + \pi
    x4=2πn+3π2x_{4} = 2 \pi n + \frac{3 \pi}{2}
    График
    0-80-60-40-2020406080-100100-25002500
    Быстрый ответ [src]
         -pi 
    x1 = ----
          2  
    x1=π2x_{1} = - \frac{\pi}{2}
         -pi 
    x2 = ----
          6  
    x2=π6x_{2} = - \frac{\pi}{6}
         7*pi
    x3 = ----
          6  
    x3=7π6x_{3} = \frac{7 \pi}{6}
         3*pi
    x4 = ----
          2  
    x4=3π2x_{4} = \frac{3 \pi}{2}
                  /    /1    pi*I \\     /    /1    pi*I \\
    x5 = pi + I*im|asin|- - ------|| + re|asin|- - ------||
                  \    \2   log(3)//     \    \2   log(3)//
    x5=re(asin(12iπlog(3)))+π+iim(asin(12iπlog(3)))x_{5} = \operatorname{re}{\left(\operatorname{asin}{\left(\frac{1}{2} - \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)} + \pi + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{1}{2} - \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)}
                  /    /     pi*I \\     /    /     pi*I \\
    x6 = pi + I*im|asin|1 - ------|| + re|asin|1 - ------||
                  \    \    log(3)//     \    \    log(3)//
    x6=re(asin(1iπlog(3)))+π+iim(asin(1iπlog(3)))x_{6} = \operatorname{re}{\left(\operatorname{asin}{\left(1 - \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)} + \pi + i \operatorname{im}{\left(\operatorname{asin}{\left(1 - \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)}
             /    /1    pi*I \\       /    /1    pi*I \\
    x7 = - re|asin|- - ------|| - I*im|asin|- - ------||
             \    \2   log(3)//       \    \2   log(3)//
    x7=re(asin(12iπlog(3)))iim(asin(12iπlog(3)))x_{7} = - \operatorname{re}{\left(\operatorname{asin}{\left(\frac{1}{2} - \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)} - i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{1}{2} - \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)}
             /    /     pi*I \\       /    /     pi*I \\
    x8 = - re|asin|1 - ------|| - I*im|asin|1 - ------||
             \    \    log(3)//       \    \    log(3)//
    x8=re(asin(1iπlog(3)))iim(asin(1iπlog(3)))x_{8} = - \operatorname{re}{\left(\operatorname{asin}{\left(1 - \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)} - i \operatorname{im}{\left(\operatorname{asin}{\left(1 - \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)}
    Сумма и произведение корней [src]
    сумма
        pi   pi   7*pi   3*pi            /    /1    pi*I \\     /    /1    pi*I \\            /    /     pi*I \\     /    /     pi*I \\       /    /1    pi*I \\       /    /1    pi*I \\       /    /     pi*I \\       /    /     pi*I \\
    0 - -- - -- + ---- + ---- + pi + I*im|asin|- - ------|| + re|asin|- - ------|| + pi + I*im|asin|1 - ------|| + re|asin|1 - ------|| + - re|asin|- - ------|| - I*im|asin|- - ------|| + - re|asin|1 - ------|| - I*im|asin|1 - ------||
        2    6     6      2              \    \2   log(3)//     \    \2   log(3)//            \    \    log(3)//     \    \    log(3)//       \    \2   log(3)//       \    \2   log(3)//       \    \    log(3)//       \    \    log(3)//
    (((re(asin(1iπlog(3)))+π+iim(asin(1iπlog(3))))+(((((π2+0)π6)+7π6)+3π2)+(re(asin(12iπlog(3)))+π+iim(asin(12iπlog(3))))))(re(asin(12iπlog(3)))+iim(asin(12iπlog(3)))))(re(asin(1iπlog(3)))+iim(asin(1iπlog(3))))\left(\left(\left(\operatorname{re}{\left(\operatorname{asin}{\left(1 - \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)} + \pi + i \operatorname{im}{\left(\operatorname{asin}{\left(1 - \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)}\right) + \left(\left(\left(\left(\left(- \frac{\pi}{2} + 0\right) - \frac{\pi}{6}\right) + \frac{7 \pi}{6}\right) + \frac{3 \pi}{2}\right) + \left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{1}{2} - \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)} + \pi + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{1}{2} - \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)}\right)\right)\right) - \left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{1}{2} - \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{1}{2} - \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)}\right)\right) - \left(\operatorname{re}{\left(\operatorname{asin}{\left(1 - \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(1 - \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)}\right)
    =
    4*pi
    4π4 \pi
    произведение
      -pi  -pi  7*pi 3*pi /         /    /1    pi*I \\     /    /1    pi*I \\\ /         /    /     pi*I \\     /    /     pi*I \\\ /    /    /1    pi*I \\       /    /1    pi*I \\\ /    /    /     pi*I \\       /    /     pi*I \\\
    1*----*----*----*----*|pi + I*im|asin|- - ------|| + re|asin|- - ------|||*|pi + I*im|asin|1 - ------|| + re|asin|1 - ------|||*|- re|asin|- - ------|| - I*im|asin|- - ------|||*|- re|asin|1 - ------|| - I*im|asin|1 - ------|||
       2    6    6    2   \         \    \2   log(3)//     \    \2   log(3)/// \         \    \    log(3)//     \    \    log(3)/// \    \    \2   log(3)//       \    \2   log(3)/// \    \    \    log(3)//       \    \    log(3)///
    3π27π6π61(π2)(re(asin(12iπlog(3)))+π+iim(asin(12iπlog(3))))(re(asin(1iπlog(3)))+π+iim(asin(1iπlog(3))))(re(asin(12iπlog(3)))iim(asin(12iπlog(3))))(re(asin(1iπlog(3)))iim(asin(1iπlog(3))))\frac{3 \pi}{2} \frac{7 \pi}{6} - \frac{\pi}{6} \cdot 1 \left(- \frac{\pi}{2}\right) \left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{1}{2} - \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)} + \pi + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{1}{2} - \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{asin}{\left(1 - \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)} + \pi + i \operatorname{im}{\left(\operatorname{asin}{\left(1 - \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)}\right) \left(- \operatorname{re}{\left(\operatorname{asin}{\left(\frac{1}{2} - \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)} - i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{1}{2} - \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)}\right) \left(- \operatorname{re}{\left(\operatorname{asin}{\left(1 - \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)} - i \operatorname{im}{\left(\operatorname{asin}{\left(1 - \frac{i \pi}{\log{\left(3 \right)}} \right)}\right)}\right)
    =
        4 /    /    /-pi*I + log(3)\\     /    /-pi*I + log(3)\\\ /    /    /-2*pi*I + log(3)\\     /    /-2*pi*I + log(3)\\\ /         /    /-pi*I + log(3)\\     /    /-pi*I + log(3)\\\ /         /    /-2*pi*I + log(3)\\     /    /-2*pi*I + log(3)\\\
    7*pi *|I*im|asin|--------------|| + re|asin|--------------|||*|I*im|asin|----------------|| + re|asin|----------------|||*|pi + I*im|asin|--------------|| + re|asin|--------------|||*|pi + I*im|asin|----------------|| + re|asin|----------------|||
          \    \    \    log(3)    //     \    \    log(3)    /// \    \    \    2*log(3)    //     \    \    2*log(3)    /// \         \    \    log(3)    //     \    \    log(3)    /// \         \    \    2*log(3)    //     \    \    2*log(3)    ///
    -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                                               48                                                                                                                          
    7π4(re(asin(log(3)2iπ2log(3)))+iim(asin(log(3)2iπ2log(3))))(re(asin(log(3)iπlog(3)))+iim(asin(log(3)iπlog(3))))(re(asin(log(3)2iπ2log(3)))+π+iim(asin(log(3)2iπ2log(3))))(re(asin(log(3)iπlog(3)))+π+iim(asin(log(3)iπlog(3))))48\frac{7 \pi^{4} \left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{\log{\left(3 \right)} - 2 i \pi}{2 \log{\left(3 \right)}} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{\log{\left(3 \right)} - 2 i \pi}{2 \log{\left(3 \right)}} \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{\log{\left(3 \right)} - i \pi}{\log{\left(3 \right)}} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{\log{\left(3 \right)} - i \pi}{\log{\left(3 \right)}} \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{\log{\left(3 \right)} - 2 i \pi}{2 \log{\left(3 \right)}} \right)}\right)} + \pi + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{\log{\left(3 \right)} - 2 i \pi}{2 \log{\left(3 \right)}} \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{\log{\left(3 \right)} - i \pi}{\log{\left(3 \right)}} \right)}\right)} + \pi + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{\log{\left(3 \right)} - i \pi}{\log{\left(3 \right)}} \right)}\right)}\right)}{48}
    Численный ответ [src]
    x1 = 28.7979326579064
    x2 = -83.2522055120905
    x3 = 80.110613146131
    x4 = -19.3731546971371
    x5 = -1.57079643126535
    x6 = -7.85398149709644
    x7 = 5.75958653158129
    x8 = 91.6297857297023
    x9 = 36.1283157526274
    x10 = 72.7802298081635
    x11 = 67.544242261172
    x12 = 43.4586983746588
    x13 = 22.5147473507269
    x14 = 47.6474885794452
    x15 = 74.8746249105567
    x16 = 4.71238878135175
    x17 = -34.0339204138894
    x18 = 29.8451303223305
    x19 = -51.8362786893523
    x20 = 37.1755130674792
    x21 = 30.8923277602996
    x22 = -52.8834763354282
    x23 = 81.1578102177363
    x24 = -46.6002910282486
    x25 = 98.9601681124219
    x26 = -21.4675497995303
    x27 = -27.7507351067098
    x28 = -31.9395253114962
    x29 = 53.9306738866248
    x30 = -0.523598775598299
    x31 = 62.3082542961976
    x32 = 18.3259571459405
    x33 = -58.1194639980725
    x34 = -78.0162175641465
    x35 = 98.9601683767802
    x36 = 3.66519142918809
    x37 = 41.3643032722656
    x38 = -94.7713783832921
    x39 = -59.1666616426078
    x40 = -2.61799387799149
    x41 = -69.6386371545737
    x42 = -89.5353907489903
    x43 = -71.733032256967
    x44 = 92.6769830836429
    x45 = 73.8274274819368
    x46 = 66.497044500984
    x47 = 86.3937978872822
    x48 = -20.4203520388702
    x49 = -25.6563400043166
    x50 = 79.0634151153431
    x51 = -96.8657734856853
    x52 = -40.317105721069
    x53 = -88.4881930761125
    x54 = -63.3554518473942
    x55 = -82.2050077689329
    x56 = 42.4115007279036
    x57 = -65.4498469497874
    x58 = -44.5058959258554
    x59 = 60.2138591938044
    x60 = -15.1843644923507
    x61 = 49.7418836818384
    x62 = 100.007366139275
    x63 = -8.90117918517108
    x64 = -14.1371668376557
    x65 = -64.4026491910109
    x66 = 97.9129710368819
    x67 = 68.5914396033772
    x68 = 56.025068989018
    x69 = -39.2699083668319
    x70 = 9.94837673636768
    x71 = -6.80678408277789
    x72 = -50.789081233035
    x73 = -95.8185758680478
    x74 = 12.0427718387609
    x75 = -13.0899693899575
    x76 = 48.6946859316831
    x77 = -38.2227106186758
    x78 = -57.0722665402146
    x79 = 87.4409955249159
    x80 = 35.081117965086
    x81 = 93.7241808320955
    x82 = -75.9218224617533
    x83 = -101.054563690472
    x84 = 23.5619451119578
    x85 = -90.5825881785057
    x86 = 85.3466004225227
    x87 = -45.5530935902303
    x88 = -84.2994028713261
    x89 = 24.60914245312
    x90 = 16.2315620435473
    График
    27*81^sinx-12*9^sinx+1=0 (уравнение) /media/krcore-image-pods/hash/equation/4/0d/64fe96ab49dafccc003da0a6a49df.png