Подробное решение
Дано уравнение:
$$27^{x} = 9^{y}$$
или
$$27^{x} - 9^{y} = 0$$
или
$$27^{x} = 9^{y}$$
или
$$27^{x} = 9^{y}$$
- это простейшее показательное ур-ние
Сделаем замену
$$v = 27^{x}$$
получим
$$- 9^{y} + v = 0$$
или
$$- 9^{y} + v = 0$$
делаем обратную замену
$$27^{x} = v$$
или
$$x = \frac{\log{\left(v \right)}}{\log{\left(27 \right)}}$$
Тогда, окончательный ответ
$$x_{1} = \frac{\log{\left(9^{y} \right)}}{\log{\left(27 \right)}} = \frac{\log{\left(9^{y} \right)}}{\log{\left(27 \right)}}$$
/ re(y)\ / y\
log\9 / I*arg\9 /
x1 = ----------- + ---------
3*log(3) 3*log(3)
$$x_{1} = \frac{\log{\left(9^{\operatorname{re}{\left(y\right)}} \right)}}{3 \log{\left(3 \right)}} + \frac{i \arg{\left(9^{y} \right)}}{3 \log{\left(3 \right)}}$$
/| ____ ____|\
||3 / y ___ 3 / y ||
||\/ 9 I*\/ 3 *\/ 9 || / ____ \
log||------- - ---------------|| |3 / y / ___\|
\| 2 2 |/ I*arg\\/ 9 *\-1 + I*\/ 3 //
x2 = -------------------------------- + -----------------------------
log(3) log(3)
$$x_{2} = \frac{\log{\left(\left|{\frac{\sqrt[3]{9^{y}}}{2} - \frac{\sqrt{3} i \sqrt[3]{9^{y}}}{2}}\right| \right)}}{\log{\left(3 \right)}} + \frac{i \arg{\left(\left(-1 + \sqrt{3} i\right) \sqrt[3]{9^{y}} \right)}}{\log{\left(3 \right)}}$$
/| ____ ____|\
||3 / y ___ 3 / y ||
||\/ 9 I*\/ 3 *\/ 9 || / ____ \
log||------- + ---------------|| | 3 / y / ___\|
\| 2 2 |/ I*arg\-\/ 9 *\1 + I*\/ 3 //
x3 = -------------------------------- + -----------------------------
log(3) log(3)
$$x_{3} = \frac{\log{\left(\left|{\frac{\sqrt[3]{9^{y}}}{2} + \frac{\sqrt{3} i \sqrt[3]{9^{y}}}{2}}\right| \right)}}{\log{\left(3 \right)}} + \frac{i \arg{\left(- \left(1 + \sqrt{3} i\right) \sqrt[3]{9^{y}} \right)}}{\log{\left(3 \right)}}$$
Сумма и произведение корней
[src] /| ____ ____|\ /| ____ ____|\
||3 / y ___ 3 / y || ||3 / y ___ 3 / y ||
||\/ 9 I*\/ 3 *\/ 9 || / ____ \ ||\/ 9 I*\/ 3 *\/ 9 || / ____ \
/ re(y)\ / y\ log||------- - ---------------|| |3 / y / ___\| log||------- + ---------------|| | 3 / y / ___\|
log\9 / I*arg\9 / \| 2 2 |/ I*arg\\/ 9 *\-1 + I*\/ 3 // \| 2 2 |/ I*arg\-\/ 9 *\1 + I*\/ 3 //
----------- + --------- + -------------------------------- + ----------------------------- + -------------------------------- + -----------------------------
3*log(3) 3*log(3) log(3) log(3) log(3) log(3)
$$\left(\frac{\log{\left(\left|{\frac{\sqrt[3]{9^{y}}}{2} + \frac{\sqrt{3} i \sqrt[3]{9^{y}}}{2}}\right| \right)}}{\log{\left(3 \right)}} + \frac{i \arg{\left(- \left(1 + \sqrt{3} i\right) \sqrt[3]{9^{y}} \right)}}{\log{\left(3 \right)}}\right) + \left(\left(\frac{\log{\left(9^{\operatorname{re}{\left(y\right)}} \right)}}{3 \log{\left(3 \right)}} + \frac{i \arg{\left(9^{y} \right)}}{3 \log{\left(3 \right)}}\right) + \left(\frac{\log{\left(\left|{\frac{\sqrt[3]{9^{y}}}{2} - \frac{\sqrt{3} i \sqrt[3]{9^{y}}}{2}}\right| \right)}}{\log{\left(3 \right)}} + \frac{i \arg{\left(\left(-1 + \sqrt{3} i\right) \sqrt[3]{9^{y}} \right)}}{\log{\left(3 \right)}}\right)\right)$$
/| ____ ____|\ /| ____ ____|\
||3 / y ___ 3 / y || ||3 / y ___ 3 / y ||
||\/ 9 I*\/ 3 *\/ 9 || ||\/ 9 I*\/ 3 *\/ 9 || / ____ \ / ____ \
log||------- + ---------------|| log||------- - ---------------|| / re(y)\ |3 / y / ___\| | 3 / y / ___\| / y\
\| 2 2 |/ \| 2 2 |/ log\9 / I*arg\\/ 9 *\-1 + I*\/ 3 // I*arg\-\/ 9 *\1 + I*\/ 3 // I*arg\9 /
-------------------------------- + -------------------------------- + ----------- + ----------------------------- + ----------------------------- + ---------
log(3) log(3) 3*log(3) log(3) log(3) 3*log(3)
$$\frac{\log{\left(9^{\operatorname{re}{\left(y\right)}} \right)}}{3 \log{\left(3 \right)}} + \frac{\log{\left(\left|{\frac{\sqrt[3]{9^{y}}}{2} - \frac{\sqrt{3} i \sqrt[3]{9^{y}}}{2}}\right| \right)}}{\log{\left(3 \right)}} + \frac{\log{\left(\left|{\frac{\sqrt[3]{9^{y}}}{2} + \frac{\sqrt{3} i \sqrt[3]{9^{y}}}{2}}\right| \right)}}{\log{\left(3 \right)}} + \frac{i \arg{\left(9^{y} \right)}}{3 \log{\left(3 \right)}} + \frac{i \arg{\left(\left(-1 + \sqrt{3} i\right) \sqrt[3]{9^{y}} \right)}}{\log{\left(3 \right)}} + \frac{i \arg{\left(- \left(1 + \sqrt{3} i\right) \sqrt[3]{9^{y}} \right)}}{\log{\left(3 \right)}}$$
/ /| ____ ____|\ \ / /| ____ ____|\ \
| ||3 / y ___ 3 / y || | | ||3 / y ___ 3 / y || |
| ||\/ 9 I*\/ 3 *\/ 9 || / ____ \| | ||\/ 9 I*\/ 3 *\/ 9 || / ____ \|
/ / re(y)\ / y\\ |log||------- - ---------------|| |3 / y / ___\|| |log||------- + ---------------|| | 3 / y / ___\||
|log\9 / I*arg\9 /| | \| 2 2 |/ I*arg\\/ 9 *\-1 + I*\/ 3 //| | \| 2 2 |/ I*arg\-\/ 9 *\1 + I*\/ 3 //|
|----------- + ---------|*|-------------------------------- + -----------------------------|*|-------------------------------- + -----------------------------|
\ 3*log(3) 3*log(3)/ \ log(3) log(3) / \ log(3) log(3) /
$$\left(\frac{\log{\left(9^{\operatorname{re}{\left(y\right)}} \right)}}{3 \log{\left(3 \right)}} + \frac{i \arg{\left(9^{y} \right)}}{3 \log{\left(3 \right)}}\right) \left(\frac{\log{\left(\left|{\frac{\sqrt[3]{9^{y}}}{2} - \frac{\sqrt{3} i \sqrt[3]{9^{y}}}{2}}\right| \right)}}{\log{\left(3 \right)}} + \frac{i \arg{\left(\left(-1 + \sqrt{3} i\right) \sqrt[3]{9^{y}} \right)}}{\log{\left(3 \right)}}\right) \left(\frac{\log{\left(\left|{\frac{\sqrt[3]{9^{y}}}{2} + \frac{\sqrt{3} i \sqrt[3]{9^{y}}}{2}}\right| \right)}}{\log{\left(3 \right)}} + \frac{i \arg{\left(- \left(1 + \sqrt{3} i\right) \sqrt[3]{9^{y}} \right)}}{\log{\left(3 \right)}}\right)$$
/ / ____ \ /| ____|\\ / / ____ \ /| ____|\\
/ / y\ / re(y)\\ | |3 / y / ___\| ||3 / y ||| | | 3 / y / ___\| ||3 / y |||
\I*arg\9 / + log\9 //*\I*arg\\/ 9 *\-1 + I*\/ 3 // + log\|\/ 9 |//*\I*arg\-\/ 9 *\1 + I*\/ 3 // + log\|\/ 9 |//
---------------------------------------------------------------------------------------------------------------------------
3
3*log (3)
$$\frac{\left(\log{\left(9^{\operatorname{re}{\left(y\right)}} \right)} + i \arg{\left(9^{y} \right)}\right) \left(\log{\left(\left|{\sqrt[3]{9^{y}}}\right| \right)} + i \arg{\left(\left(-1 + \sqrt{3} i\right) \sqrt[3]{9^{y}} \right)}\right) \left(\log{\left(\left|{\sqrt[3]{9^{y}}}\right| \right)} + i \arg{\left(- \left(1 + \sqrt{3} i\right) \sqrt[3]{9^{y}} \right)}\right)}{3 \log{\left(3 \right)}^{3}}$$