27^x=9^y (уравнение) Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: 27^x=9^y
Решение
Подробное решение
Дано уравнение:2 7 x = 9 y 27^{x} = 9^{y} 2 7 x = 9 y или2 7 x − 9 y = 0 27^{x} - 9^{y} = 0 2 7 x − 9 y = 0 или2 7 x = 9 y 27^{x} = 9^{y} 2 7 x = 9 y или2 7 x = 9 y 27^{x} = 9^{y} 2 7 x = 9 y - это простейшее показательное ур-ние Сделаем заменуv = 2 7 x v = 27^{x} v = 2 7 x получим− 9 y + v = 0 - 9^{y} + v = 0 − 9 y + v = 0 или− 9 y + v = 0 - 9^{y} + v = 0 − 9 y + v = 0 делаем обратную замену2 7 x = v 27^{x} = v 2 7 x = v илиx = log ( v ) log ( 27 ) x = \frac{\log{\left(v \right)}}{\log{\left(27 \right)}} x = log ( 27 ) log ( v ) Тогда, окончательный ответx 1 = log ( 9 y ) log ( 27 ) = log ( 9 y ) log ( 27 ) x_{1} = \frac{\log{\left(9^{y} \right)}}{\log{\left(27 \right)}} = \frac{\log{\left(9^{y} \right)}}{\log{\left(27 \right)}} x 1 = log ( 27 ) log ( 9 y ) = log ( 27 ) log ( 9 y ) / re(y)\ / y\
log\9 / I*arg\9 /
x1 = ----------- + ---------
3*log(3) 3*log(3) x 1 = log ( 9 re ( y ) ) 3 log ( 3 ) + i arg ( 9 y ) 3 log ( 3 ) x_{1} = \frac{\log{\left(9^{\operatorname{re}{\left(y\right)}} \right)}}{3 \log{\left(3 \right)}} + \frac{i \arg{\left(9^{y} \right)}}{3 \log{\left(3 \right)}} x 1 = 3 log ( 3 ) log ( 9 re ( y ) ) + 3 log ( 3 ) i arg ( 9 y ) /| ____ ____|\
||3 / y ___ 3 / y ||
||\/ 9 I*\/ 3 *\/ 9 || / ____ \
log||------- - ---------------|| |3 / y / ___\|
\| 2 2 |/ I*arg\\/ 9 *\-1 + I*\/ 3 //
x2 = -------------------------------- + -----------------------------
log(3) log(3) x 2 = log ( ∣ 9 y 3 2 − 3 i 9 y 3 2 ∣ ) log ( 3 ) + i arg ( ( − 1 + 3 i ) 9 y 3 ) log ( 3 ) x_{2} = \frac{\log{\left(\left|{\frac{\sqrt[3]{9^{y}}}{2} - \frac{\sqrt{3} i \sqrt[3]{9^{y}}}{2}}\right| \right)}}{\log{\left(3 \right)}} + \frac{i \arg{\left(\left(-1 + \sqrt{3} i\right) \sqrt[3]{9^{y}} \right)}}{\log{\left(3 \right)}} x 2 = log ( 3 ) log ( 2 3 9 y − 2 3 i 3 9 y ) + log ( 3 ) i arg ( ( − 1 + 3 i ) 3 9 y ) /| ____ ____|\
||3 / y ___ 3 / y ||
||\/ 9 I*\/ 3 *\/ 9 || / ____ \
log||------- + ---------------|| | 3 / y / ___\|
\| 2 2 |/ I*arg\-\/ 9 *\1 + I*\/ 3 //
x3 = -------------------------------- + -----------------------------
log(3) log(3) x 3 = log ( ∣ 9 y 3 2 + 3 i 9 y 3 2 ∣ ) log ( 3 ) + i arg ( − ( 1 + 3 i ) 9 y 3 ) log ( 3 ) x_{3} = \frac{\log{\left(\left|{\frac{\sqrt[3]{9^{y}}}{2} + \frac{\sqrt{3} i \sqrt[3]{9^{y}}}{2}}\right| \right)}}{\log{\left(3 \right)}} + \frac{i \arg{\left(- \left(1 + \sqrt{3} i\right) \sqrt[3]{9^{y}} \right)}}{\log{\left(3 \right)}} x 3 = log ( 3 ) log ( 2 3 9 y + 2 3 i 3 9 y ) + log ( 3 ) i arg ( − ( 1 + 3 i ) 3 9 y )
Сумма и произведение корней
[src] /| ____ ____|\ /| ____ ____|\
||3 / y ___ 3 / y || ||3 / y ___ 3 / y ||
||\/ 9 I*\/ 3 *\/ 9 || / ____ \ ||\/ 9 I*\/ 3 *\/ 9 || / ____ \
/ re(y)\ / y\ log||------- - ---------------|| |3 / y / ___\| log||------- + ---------------|| | 3 / y / ___\|
log\9 / I*arg\9 / \| 2 2 |/ I*arg\\/ 9 *\-1 + I*\/ 3 // \| 2 2 |/ I*arg\-\/ 9 *\1 + I*\/ 3 //
----------- + --------- + -------------------------------- + ----------------------------- + -------------------------------- + -----------------------------
3*log(3) 3*log(3) log(3) log(3) log(3) log(3) ( log ( ∣ 9 y 3 2 + 3 i 9 y 3 2 ∣ ) log ( 3 ) + i arg ( − ( 1 + 3 i ) 9 y 3 ) log ( 3 ) ) + ( ( log ( 9 re ( y ) ) 3 log ( 3 ) + i arg ( 9 y ) 3 log ( 3 ) ) + ( log ( ∣ 9 y 3 2 − 3 i 9 y 3 2 ∣ ) log ( 3 ) + i arg ( ( − 1 + 3 i ) 9 y 3 ) log ( 3 ) ) ) \left(\frac{\log{\left(\left|{\frac{\sqrt[3]{9^{y}}}{2} + \frac{\sqrt{3} i \sqrt[3]{9^{y}}}{2}}\right| \right)}}{\log{\left(3 \right)}} + \frac{i \arg{\left(- \left(1 + \sqrt{3} i\right) \sqrt[3]{9^{y}} \right)}}{\log{\left(3 \right)}}\right) + \left(\left(\frac{\log{\left(9^{\operatorname{re}{\left(y\right)}} \right)}}{3 \log{\left(3 \right)}} + \frac{i \arg{\left(9^{y} \right)}}{3 \log{\left(3 \right)}}\right) + \left(\frac{\log{\left(\left|{\frac{\sqrt[3]{9^{y}}}{2} - \frac{\sqrt{3} i \sqrt[3]{9^{y}}}{2}}\right| \right)}}{\log{\left(3 \right)}} + \frac{i \arg{\left(\left(-1 + \sqrt{3} i\right) \sqrt[3]{9^{y}} \right)}}{\log{\left(3 \right)}}\right)\right) log ( 3 ) log ( 2 3 9 y + 2 3 i 3 9 y ) + log ( 3 ) i arg ( − ( 1 + 3 i ) 3 9 y ) + ( 3 log ( 3 ) log ( 9 re ( y ) ) + 3 log ( 3 ) i arg ( 9 y ) ) + log ( 3 ) log ( 2 3 9 y − 2 3 i 3 9 y ) + log ( 3 ) i arg ( ( − 1 + 3 i ) 3 9 y ) /| ____ ____|\ /| ____ ____|\
||3 / y ___ 3 / y || ||3 / y ___ 3 / y ||
||\/ 9 I*\/ 3 *\/ 9 || ||\/ 9 I*\/ 3 *\/ 9 || / ____ \ / ____ \
log||------- + ---------------|| log||------- - ---------------|| / re(y)\ |3 / y / ___\| | 3 / y / ___\| / y\
\| 2 2 |/ \| 2 2 |/ log\9 / I*arg\\/ 9 *\-1 + I*\/ 3 // I*arg\-\/ 9 *\1 + I*\/ 3 // I*arg\9 /
-------------------------------- + -------------------------------- + ----------- + ----------------------------- + ----------------------------- + ---------
log(3) log(3) 3*log(3) log(3) log(3) 3*log(3) log ( 9 re ( y ) ) 3 log ( 3 ) + log ( ∣ 9 y 3 2 − 3 i 9 y 3 2 ∣ ) log ( 3 ) + log ( ∣ 9 y 3 2 + 3 i 9 y 3 2 ∣ ) log ( 3 ) + i arg ( 9 y ) 3 log ( 3 ) + i arg ( ( − 1 + 3 i ) 9 y 3 ) log ( 3 ) + i arg ( − ( 1 + 3 i ) 9 y 3 ) log ( 3 ) \frac{\log{\left(9^{\operatorname{re}{\left(y\right)}} \right)}}{3 \log{\left(3 \right)}} + \frac{\log{\left(\left|{\frac{\sqrt[3]{9^{y}}}{2} - \frac{\sqrt{3} i \sqrt[3]{9^{y}}}{2}}\right| \right)}}{\log{\left(3 \right)}} + \frac{\log{\left(\left|{\frac{\sqrt[3]{9^{y}}}{2} + \frac{\sqrt{3} i \sqrt[3]{9^{y}}}{2}}\right| \right)}}{\log{\left(3 \right)}} + \frac{i \arg{\left(9^{y} \right)}}{3 \log{\left(3 \right)}} + \frac{i \arg{\left(\left(-1 + \sqrt{3} i\right) \sqrt[3]{9^{y}} \right)}}{\log{\left(3 \right)}} + \frac{i \arg{\left(- \left(1 + \sqrt{3} i\right) \sqrt[3]{9^{y}} \right)}}{\log{\left(3 \right)}} 3 log ( 3 ) log ( 9 re ( y ) ) + log ( 3 ) log ( 2 3 9 y − 2 3 i 3 9 y ) + log ( 3 ) log ( 2 3 9 y + 2 3 i 3 9 y ) + 3 log ( 3 ) i arg ( 9 y ) + log ( 3 ) i arg ( ( − 1 + 3 i ) 3 9 y ) + log ( 3 ) i arg ( − ( 1 + 3 i ) 3 9 y ) / /| ____ ____|\ \ / /| ____ ____|\ \
| ||3 / y ___ 3 / y || | | ||3 / y ___ 3 / y || |
| ||\/ 9 I*\/ 3 *\/ 9 || / ____ \| | ||\/ 9 I*\/ 3 *\/ 9 || / ____ \|
/ / re(y)\ / y\\ |log||------- - ---------------|| |3 / y / ___\|| |log||------- + ---------------|| | 3 / y / ___\||
|log\9 / I*arg\9 /| | \| 2 2 |/ I*arg\\/ 9 *\-1 + I*\/ 3 //| | \| 2 2 |/ I*arg\-\/ 9 *\1 + I*\/ 3 //|
|----------- + ---------|*|-------------------------------- + -----------------------------|*|-------------------------------- + -----------------------------|
\ 3*log(3) 3*log(3)/ \ log(3) log(3) / \ log(3) log(3) / ( log ( 9 re ( y ) ) 3 log ( 3 ) + i arg ( 9 y ) 3 log ( 3 ) ) ( log ( ∣ 9 y 3 2 − 3 i 9 y 3 2 ∣ ) log ( 3 ) + i arg ( ( − 1 + 3 i ) 9 y 3 ) log ( 3 ) ) ( log ( ∣ 9 y 3 2 + 3 i 9 y 3 2 ∣ ) log ( 3 ) + i arg ( − ( 1 + 3 i ) 9 y 3 ) log ( 3 ) ) \left(\frac{\log{\left(9^{\operatorname{re}{\left(y\right)}} \right)}}{3 \log{\left(3 \right)}} + \frac{i \arg{\left(9^{y} \right)}}{3 \log{\left(3 \right)}}\right) \left(\frac{\log{\left(\left|{\frac{\sqrt[3]{9^{y}}}{2} - \frac{\sqrt{3} i \sqrt[3]{9^{y}}}{2}}\right| \right)}}{\log{\left(3 \right)}} + \frac{i \arg{\left(\left(-1 + \sqrt{3} i\right) \sqrt[3]{9^{y}} \right)}}{\log{\left(3 \right)}}\right) \left(\frac{\log{\left(\left|{\frac{\sqrt[3]{9^{y}}}{2} + \frac{\sqrt{3} i \sqrt[3]{9^{y}}}{2}}\right| \right)}}{\log{\left(3 \right)}} + \frac{i \arg{\left(- \left(1 + \sqrt{3} i\right) \sqrt[3]{9^{y}} \right)}}{\log{\left(3 \right)}}\right) ( 3 log ( 3 ) log ( 9 re ( y ) ) + 3 log ( 3 ) i arg ( 9 y ) ) log ( 3 ) log ( 2 3 9 y − 2 3 i 3 9 y ) + log ( 3 ) i arg ( ( − 1 + 3 i ) 3 9 y ) log ( 3 ) log ( 2 3 9 y + 2 3 i 3 9 y ) + log ( 3 ) i arg ( − ( 1 + 3 i ) 3 9 y ) / / ____ \ /| ____|\\ / / ____ \ /| ____|\\
/ / y\ / re(y)\\ | |3 / y / ___\| ||3 / y ||| | | 3 / y / ___\| ||3 / y |||
\I*arg\9 / + log\9 //*\I*arg\\/ 9 *\-1 + I*\/ 3 // + log\|\/ 9 |//*\I*arg\-\/ 9 *\1 + I*\/ 3 // + log\|\/ 9 |//
---------------------------------------------------------------------------------------------------------------------------
3
3*log (3) ( log ( 9 re ( y ) ) + i arg ( 9 y ) ) ( log ( ∣ 9 y 3 ∣ ) + i arg ( ( − 1 + 3 i ) 9 y 3 ) ) ( log ( ∣ 9 y 3 ∣ ) + i arg ( − ( 1 + 3 i ) 9 y 3 ) ) 3 log ( 3 ) 3 \frac{\left(\log{\left(9^{\operatorname{re}{\left(y\right)}} \right)} + i \arg{\left(9^{y} \right)}\right) \left(\log{\left(\left|{\sqrt[3]{9^{y}}}\right| \right)} + i \arg{\left(\left(-1 + \sqrt{3} i\right) \sqrt[3]{9^{y}} \right)}\right) \left(\log{\left(\left|{\sqrt[3]{9^{y}}}\right| \right)} + i \arg{\left(- \left(1 + \sqrt{3} i\right) \sqrt[3]{9^{y}} \right)}\right)}{3 \log{\left(3 \right)}^{3}} 3 log ( 3 ) 3 ( log ( 9 re ( y ) ) + i arg ( 9 y ) ) ( log ( 3 9 y ) + i arg ( ( − 1 + 3 i ) 3 9 y ) ) ( log ( 3 9 y ) + i arg ( − ( 1 + 3 i ) 3 9 y ) )