27^x=-27 (уравнение) Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: 27^x=-27
Решение
Подробное решение
Дано уравнение:2 7 x = − 27 27^{x} = -27 2 7 x = − 27 или2 7 x + 27 = 0 27^{x} + 27 = 0 2 7 x + 27 = 0 или2 7 x = − 27 27^{x} = -27 2 7 x = − 27 или2 7 x = − 27 27^{x} = -27 2 7 x = − 27 - это простейшее показательное ур-ние Сделаем заменуv = 2 7 x v = 27^{x} v = 2 7 x получимv + 27 = 0 v + 27 = 0 v + 27 = 0 илиv + 27 = 0 v + 27 = 0 v + 27 = 0 Переносим свободные слагаемые (без v) из левой части в правую, получим:v = − 27 v = -27 v = − 27 Получим ответ: v = -27 делаем обратную замену2 7 x = v 27^{x} = v 2 7 x = v илиx = log ( v ) log ( 27 ) x = \frac{\log{\left(v \right)}}{\log{\left(27 \right)}} x = log ( 27 ) log ( v ) Тогда, окончательный ответx 1 = log ( − 27 ) log ( 27 ) = 1 + i π log ( 27 ) x_{1} = \frac{\log{\left(-27 \right)}}{\log{\left(27 \right)}} = 1 + \frac{i \pi}{\log{\left(27 \right)}} x 1 = log ( 27 ) log ( − 27 ) = 1 + log ( 27 ) iπ
График
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 -500 1000
log(27) pi*I
x1 = -------- - --------
3*log(3) 3*log(3) x 1 = log ( 27 ) 3 log ( 3 ) − i π 3 log ( 3 ) x_{1} = \frac{\log{\left(27 \right)}}{3 \log{\left(3 \right)}} - \frac{i \pi}{3 \log{\left(3 \right)}} x 1 = 3 log ( 3 ) log ( 27 ) − 3 log ( 3 ) iπ log(27) pi*I
x2 = -------- + --------
3*log(3) 3*log(3) x 2 = log ( 27 ) 3 log ( 3 ) + i π 3 log ( 3 ) x_{2} = \frac{\log{\left(27 \right)}}{3 \log{\left(3 \right)}} + \frac{i \pi}{3 \log{\left(3 \right)}} x 2 = 3 log ( 3 ) log ( 27 ) + 3 log ( 3 ) iπ pi*I
x3 = 1 + ------
log(3) x 3 = 1 + i π log ( 3 ) x_{3} = 1 + \frac{i \pi}{\log{\left(3 \right)}} x 3 = 1 + log ( 3 ) iπ
Сумма и произведение корней
[src] log(27) pi*I log(27) pi*I pi*I
0 + -------- - -------- + -------- + -------- + 1 + ------
3*log(3) 3*log(3) 3*log(3) 3*log(3) log(3) ( ( 0 + ( log ( 27 ) 3 log ( 3 ) − i π 3 log ( 3 ) ) ) + ( log ( 27 ) 3 log ( 3 ) + i π 3 log ( 3 ) ) ) + ( 1 + i π log ( 3 ) ) \left(\left(0 + \left(\frac{\log{\left(27 \right)}}{3 \log{\left(3 \right)}} - \frac{i \pi}{3 \log{\left(3 \right)}}\right)\right) + \left(\frac{\log{\left(27 \right)}}{3 \log{\left(3 \right)}} + \frac{i \pi}{3 \log{\left(3 \right)}}\right)\right) + \left(1 + \frac{i \pi}{\log{\left(3 \right)}}\right) ( ( 0 + ( 3 log ( 3 ) log ( 27 ) − 3 log ( 3 ) iπ ) ) + ( 3 log ( 3 ) log ( 27 ) + 3 log ( 3 ) iπ ) ) + ( 1 + log ( 3 ) iπ ) 2*log(27) pi*I
1 + --------- + ------
3*log(3) log(3) 1 + 2 log ( 27 ) 3 log ( 3 ) + i π log ( 3 ) 1 + \frac{2 \log{\left(27 \right)}}{3 \log{\left(3 \right)}} + \frac{i \pi}{\log{\left(3 \right)}} 1 + 3 log ( 3 ) 2 log ( 27 ) + log ( 3 ) iπ /log(27) pi*I \ /log(27) pi*I \ / pi*I \
1*|-------- - --------|*|-------- + --------|*|1 + ------|
\3*log(3) 3*log(3)/ \3*log(3) 3*log(3)/ \ log(3)/ 1 ( log ( 27 ) 3 log ( 3 ) − i π 3 log ( 3 ) ) ( log ( 27 ) 3 log ( 3 ) + i π 3 log ( 3 ) ) ( 1 + i π log ( 3 ) ) 1 \left(\frac{\log{\left(27 \right)}}{3 \log{\left(3 \right)}} - \frac{i \pi}{3 \log{\left(3 \right)}}\right) \left(\frac{\log{\left(27 \right)}}{3 \log{\left(3 \right)}} + \frac{i \pi}{3 \log{\left(3 \right)}}\right) \left(1 + \frac{i \pi}{\log{\left(3 \right)}}\right) 1 ( 3 log ( 3 ) log ( 27 ) − 3 log ( 3 ) iπ ) ( 3 log ( 3 ) log ( 27 ) + 3 log ( 3 ) iπ ) ( 1 + log ( 3 ) iπ ) (pi*I + log(3))*(pi*I + log(27))*(-pi*I + log(27))
--------------------------------------------------
3
9*log (3) ( log ( 3 ) + i π ) ( log ( 27 ) − i π ) ( log ( 27 ) + i π ) 9 log ( 3 ) 3 \frac{\left(\log{\left(3 \right)} + i \pi\right) \left(\log{\left(27 \right)} - i \pi\right) \left(\log{\left(27 \right)} + i \pi\right)}{9 \log{\left(3 \right)}^{3}} 9 log ( 3 ) 3 ( log ( 3 ) + iπ ) ( log ( 27 ) − iπ ) ( log ( 27 ) + iπ ) x1 = 1.0 - 0.953200289126709*i x2 = 1.0 + 0.953200289126709*i x3 = 1.0 + 2.85960086738013*i