k^2-4=0 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: k^2-4=0

    Виды выражений


    Решение

    Вы ввели [src]
     2        
    k  - 4 = 0
    k24=0k^{2} - 4 = 0
    Подробное решение
    Это уравнение вида
    a*k^2 + b*k + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    k1=Db2ak_{1} = \frac{\sqrt{D} - b}{2 a}
    k2=Db2ak_{2} = \frac{- \sqrt{D} - b}{2 a}
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    a=1a = 1
    b=0b = 0
    c=4c = -4
    , то
    D = b^2 - 4 * a * c = 

    (0)^2 - 4 * (1) * (-4) = 16

    Т.к. D > 0, то уравнение имеет два корня.
    k1 = (-b + sqrt(D)) / (2*a)

    k2 = (-b - sqrt(D)) / (2*a)

    или
    k1=2k_{1} = 2
    Упростить
    k2=2k_{2} = -2
    Упростить
    График
    05-15-10-51015-200200
    Быстрый ответ [src]
    k1 = -2
    k1=2k_{1} = -2
    k2 = 2
    k2=2k_{2} = 2
    Сумма и произведение корней [src]
    сумма
    0 - 2 + 2
    (2+0)+2\left(-2 + 0\right) + 2
    =
    0
    00
    произведение
    1*-2*2
    1(2)21 \left(-2\right) 2
    =
    -4
    4-4
    Теорема Виета
    это приведённое квадратное уравнение
    k2+kp+q=0k^{2} + k p + q = 0
    где
    p=bap = \frac{b}{a}
    p=0p = 0
    q=caq = \frac{c}{a}
    q=4q = -4
    Формулы Виета
    k1+k2=pk_{1} + k_{2} = - p
    k1k2=qk_{1} k_{2} = q
    k1+k2=0k_{1} + k_{2} = 0
    k1k2=4k_{1} k_{2} = -4
    Численный ответ [src]
    k1 = -2.0
    k2 = 2.0
    График
    k^2-4=0 (уравнение) /media/krcore-image-pods/hash/equation/8/45/d527113037945added793b5e84e94.png