Подробное решение
Дано уравнение
$$\cos{\left(\cos{\left(x \right)} \right)} = \frac{1}{2}$$
преобразуем
$$\cos{\left(\cos{\left(x \right)} \right)} - \frac{1}{2} = 0$$
$$\cos{\left(\cos{\left(x \right)} \right)} - \frac{1}{2} = 0$$
Сделаем замену
$$w = \cos{\left(\cos{\left(x \right)} \right)}$$
Переносим свободные слагаемые (без w)
из левой части в правую, получим:
$$w = \frac{1}{2}$$
Получим ответ: w = 1/2
делаем обратную замену
$$\cos{\left(\cos{\left(x \right)} \right)} = w$$
подставляем w:
/ /pi\\
x1 = 2*pi - I*im|acos|--||
\ \3 //
$$x_{1} = 2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{\pi}{3} \right)}\right)}$$
/ /5*pi\\
x2 = 2*pi - I*im|acos|----||
\ \ 3 //
$$x_{2} = 2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{5 \pi}{3} \right)}\right)}$$
/ /pi\\ / /pi\\
x3 = I*im|acos|--|| + re|acos|--||
\ \3 // \ \3 //
$$x_{3} = \operatorname{re}{\left(\operatorname{acos}{\left(\frac{\pi}{3} \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{\pi}{3} \right)}\right)}$$
/ /5*pi\\ / /5*pi\\
x4 = I*im|acos|----|| + re|acos|----||
\ \ 3 // \ \ 3 //
$$x_{4} = \operatorname{re}{\left(\operatorname{acos}{\left(\frac{5 \pi}{3} \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{5 \pi}{3} \right)}\right)}$$
Сумма и произведение корней
[src] / /pi\\ / /5*pi\\ / /pi\\ / /pi\\ / /5*pi\\ / /5*pi\\
0 + 2*pi - I*im|acos|--|| + 2*pi - I*im|acos|----|| + I*im|acos|--|| + re|acos|--|| + I*im|acos|----|| + re|acos|----||
\ \3 // \ \ 3 // \ \3 // \ \3 // \ \ 3 // \ \ 3 //
$$\left(\left(\left(2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{5 \pi}{3} \right)}\right)}\right) + \left(0 + \left(2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{\pi}{3} \right)}\right)}\right)\right)\right) + \left(\operatorname{re}{\left(\operatorname{acos}{\left(\frac{\pi}{3} \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{\pi}{3} \right)}\right)}\right)\right) + \left(\operatorname{re}{\left(\operatorname{acos}{\left(\frac{5 \pi}{3} \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{5 \pi}{3} \right)}\right)}\right)$$
/ /pi\\ / /5*pi\\
4*pi + re|acos|--|| + re|acos|----||
\ \3 // \ \ 3 //
$$\operatorname{re}{\left(\operatorname{acos}{\left(\frac{\pi}{3} \right)}\right)} + \operatorname{re}{\left(\operatorname{acos}{\left(\frac{5 \pi}{3} \right)}\right)} + 4 \pi$$
/ / /pi\\\ / / /5*pi\\\ / / /pi\\ / /pi\\\ / / /5*pi\\ / /5*pi\\\
1*|2*pi - I*im|acos|--|||*|2*pi - I*im|acos|----|||*|I*im|acos|--|| + re|acos|--|||*|I*im|acos|----|| + re|acos|----|||
\ \ \3 /// \ \ \ 3 /// \ \ \3 // \ \3 /// \ \ \ 3 // \ \ 3 ///
$$1 \cdot \left(2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{\pi}{3} \right)}\right)}\right) \left(2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{5 \pi}{3} \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{acos}{\left(\frac{\pi}{3} \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{\pi}{3} \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{acos}{\left(\frac{5 \pi}{3} \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{5 \pi}{3} \right)}\right)}\right)$$
/ / /pi\\\ / / /5*pi\\\ / / /pi\\ / /pi\\\ / / /5*pi\\ / /5*pi\\\
|2*pi - I*im|acos|--|||*|2*pi - I*im|acos|----|||*|I*im|acos|--|| + re|acos|--|||*|I*im|acos|----|| + re|acos|----|||
\ \ \3 /// \ \ \ 3 /// \ \ \3 // \ \3 /// \ \ \ 3 // \ \ 3 ///
$$\left(2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{\pi}{3} \right)}\right)}\right) \left(2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{5 \pi}{3} \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{acos}{\left(\frac{\pi}{3} \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{\pi}{3} \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{acos}{\left(\frac{5 \pi}{3} \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{5 \pi}{3} \right)}\right)}\right)$$