cos(3*x)=cos(15*x) (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: cos(3*x)=cos(15*x)

    Решение

    Вы ввели [src]
    cos(3*x) = cos(15*x)
    cos(3x)=cos(15x)\cos{\left (3 x \right )} = \cos{\left (15 x \right )}
    График
    0-500-450-400-350-300-250-200-150-100-50501002-2
    Быстрый ответ [src]
    x1 = 0
    x1=0x_{1} = 0
    x2 = pi
    x2=πx_{2} = \pi
               / 9 ____\
    x3 = -I*log\-\/ -1 /
    x3=ilog(19)x_{3} = - i \log{\left (- \sqrt[9]{-1} \right )}
               /     2/9\
    x4 = -I*log\-(-1)   /
    x4=ilog((1)29)x_{4} = - i \log{\left (- \left(-1\right)^{\frac{2}{9}} \right )}
               /    7/9\
    x5 = -I*log\(-1)   /
    x5=ilog((1)79)x_{5} = - i \log{\left (\left(-1\right)^{\frac{7}{9}} \right )}
               /    8/9\
    x6 = -I*log\(-1)   /
    x6=ilog((1)89)x_{6} = - i \log{\left (\left(-1\right)^{\frac{8}{9}} \right )}
               /          ___\
               |  1   I*\/ 3 |
    x7 = -I*log|- - - -------|
               \  2      2   /
    x7=ilog(123i2)x_{7} = - i \log{\left (- \frac{1}{2} - \frac{\sqrt{3} i}{2} \right )}
               /          ___\
               |  1   I*\/ 3 |
    x8 = -I*log|- - + -------|
               \  2      2   /
    x8=ilog(12+3i2)x_{8} = - i \log{\left (- \frac{1}{2} + \frac{\sqrt{3} i}{2} \right )}
               /        ___\
               |1   I*\/ 3 |
    x9 = -I*log|- - -------|
               \2      2   /
    x9=ilog(123i2)x_{9} = - i \log{\left (\frac{1}{2} - \frac{\sqrt{3} i}{2} \right )}
                /        ___\
                |1   I*\/ 3 |
    x10 = -I*log|- + -------|
                \2      2   /
    x10=ilog(12+3i2)x_{10} = - i \log{\left (\frac{1}{2} + \frac{\sqrt{3} i}{2} \right )}
                                                       /   /pi\\
                     /    _____________________\       |cos|--||
                     |   /    2/pi\      2/pi\ |       |   \18/|
    x11 = -pi - I*log|  /  cos |--| + sin |--| | + atan|-------|
                     \\/       \18/       \18/ /       |   /pi\|
                                                       |sin|--||
                                                       \   \18//
    x11=π+atan(cos(π18)sin(π18))ilog(sin2(π18)+cos2(π18))x_{11} = - \pi + \operatorname{atan}{\left (\frac{\cos{\left (\frac{\pi}{18} \right )}}{\sin{\left (\frac{\pi}{18} \right )}} \right )} - i \log{\left (\sqrt{\sin^{2}{\left (\frac{\pi}{18} \right )} + \cos^{2}{\left (\frac{\pi}{18} \right )}} \right )}
                   /   /pi\\                                   
                   |cos|--||        /    _____________________\
                   |   \18/|        |   /    2/pi\      2/pi\ |
    x12 = pi - atan|-------| - I*log|  /  cos |--| + sin |--| |
                   |   /pi\|        \\/       \18/       \18/ /
                   |sin|--||                                   
                   \   \18//                                   
    x12=atan(cos(π18)sin(π18))+πilog(sin2(π18)+cos2(π18))x_{12} = - \operatorname{atan}{\left (\frac{\cos{\left (\frac{\pi}{18} \right )}}{\sin{\left (\frac{\pi}{18} \right )}} \right )} + \pi - i \log{\left (\sqrt{\sin^{2}{\left (\frac{\pi}{18} \right )} + \cos^{2}{\left (\frac{\pi}{18} \right )}} \right )}
                /   /pi\\                                   
                |cos|--||        /    _____________________\
                |   \18/|        |   /    2/pi\      2/pi\ |
    x13 = - atan|-------| - I*log|  /  cos |--| + sin |--| |
                |   /pi\|        \\/       \18/       \18/ /
                |sin|--||                                   
                \   \18//                                   
    x13=atan(cos(π18)sin(π18))ilog(sin2(π18)+cos2(π18))x_{13} = - \operatorname{atan}{\left (\frac{\cos{\left (\frac{\pi}{18} \right )}}{\sin{\left (\frac{\pi}{18} \right )}} \right )} - i \log{\left (\sqrt{\sin^{2}{\left (\frac{\pi}{18} \right )} + \cos^{2}{\left (\frac{\pi}{18} \right )}} \right )}
                                                   /   /pi\\
                 /    _____________________\       |cos|--||
                 |   /    2/pi\      2/pi\ |       |   \18/|
    x14 = - I*log|  /  cos |--| + sin |--| | + atan|-------|
                 \\/       \18/       \18/ /       |   /pi\|
                                                   |sin|--||
                                                   \   \18//
    x14=atan(cos(π18)sin(π18))ilog(sin2(π18)+cos2(π18))x_{14} = \operatorname{atan}{\left (\frac{\cos{\left (\frac{\pi}{18} \right )}}{\sin{\left (\frac{\pi}{18} \right )}} \right )} - i \log{\left (\sqrt{\sin^{2}{\left (\frac{\pi}{18} \right )} + \cos^{2}{\left (\frac{\pi}{18} \right )}} \right )}
                / -2*pi*I\
                | -------|
                |    9   |
    x15 = -I*log\e       /
    x15=ilog(e2π9i)x_{15} = - i \log{\left (e^{- \frac{2 \pi}{9} i} \right )}
                / -pi*I \
                | ------|
                |   9   |
    x16 = -I*log\e      /
    x16=ilog(eiπ9)x_{16} = - i \log{\left (e^{- \frac{i \pi}{9}} \right )}
                / pi*I\
                | ----|
                |  9  |
    x17 = -I*log\e    /
    x17=ilog(eiπ9)x_{17} = - i \log{\left (e^{\frac{i \pi}{9}} \right )}
                / 2*pi*I\
                | ------|
                |   9   |
    x18 = -I*log\e      /
    x18=ilog(e2π9i)x_{18} = - i \log{\left (e^{\frac{2 \pi}{9} i} \right )}
    Численный ответ [src]
    x1 = -100.007366139000
    x2 = 21.9911485832000
    x3 = -503.003890425000
    x4 = -23.7364778271000
    x5 = 95.9931088597000
    x6 = -1.74532925199000
    x7 = -51.8362787842000
    x8 = -75.7472895366000
    x9 = -39.7935069061000
    x10 = -74.0019602846000
    x11 = 36.1283155163000
    x12 = -71.7330322570000
    x13 = 48.1710873782000
    x14 = 23.5619449019000
    x15 = 14.1371669412000
    x16 = 28.2743338721000
    x17 = 32.1140582367000
    x18 = -5.75958653158000
    x19 = -15.7079632410000
    x20 = -7.85398163397000
    x21 = -53.7561409614000
    x22 = -42.2369678983000
    x23 = 38.2227106187000
    x24 = 89.3608577021000
    x25 = -17.8023583241000
    x26 = -95.6440430093000
    x27 = 26.1799388284000
    x28 = -27.7507351067000
    x29 = -65.9734457811000
    x30 = 87.9645943009000
    x31 = 38.3972435439000
    x32 = -79.9360797413000
    x33 = -31.7649923863000
    x34 = 65.9734457354000
    x35 = -43.9822971825000
    x36 = 92.5024503557000
    x37 = 43.9822971616000
    x38 = -11.8682389136000
    x39 = -70.1622359874000
    x40 = -25.8308729295000
    x41 = -3.83972435439000
    x42 = -33.1612557879000
    x43 = 84.4739357965000
    x44 = 6.28318530287000
    x45 = 0.0
    x46 = 16.2315620435000
    x47 = -57.9449311662000
    x48 = -13.9626340160000
    x49 = 86.3937979737000
    x50 = -87.9645943788000
    x51 = -49.7418836818000
    x52 = 78.8888821901000
    x53 = -93.7241808321000
    x54 = 52.0108117094000
    x55 = -35.9537825911000
    x56 = 74.0019602846000
    x57 = 34.2084533391000
    x58 = -83.7758040730000
    x59 = -61.7846554894000
    x60 = 55.8505360638000
    x61 = -45.5530934771000
    x62 = 54.1052068118000
    x63 = 50.2654824485000
    x64 = 86.2192650485000
    x65 = 76.0963553870000
    x66 = 20.2458193231000
    x67 = 10.1229096616000
    x68 = 60.3883921190000
    x69 = -47.8220215046000
    x70 = -91.8043186549000
    x71 = -88.6627260013000
    x72 = -29.8451302091000
    x73 = -33.8593874887000
    x74 = -78.0162175641000
    x75 = 94.2477796094000
    x76 = 1.74532925199000
    x77 = 63.8790505605000
    x78 = 18.1514242207000
    x79 = -8.90117918517000
    x80 = 58.1194640914000
    x81 = -97.7384381117000
    x82 = -69.8131700798000
    x83 = 98.0875039621000
    x84 = 4.18879025535000
    x85 = 42.2369678983000
    x86 = 64.2281164734000
    x87 = 10.4719754616000
    x88 = -65.2753140246000
    x89 = 72.2566310280000
    x90 = -20.4203522483000
    x91 = 8.02851455917000
    x92 = 70.6858347058000
    x93 = -21.9911485885000
    График
    cos(3*x)=cos(15*x) (уравнение) /media/krcore-image-pods/61dc/3ea1/12d7/764c/im.png