/ / ___\\ / / ___\\
x1 = - re\acos\-\/ 2 // + 2*pi - I*im\acos\-\/ 2 //
$$x_{1} = - \operatorname{re}{\left(\operatorname{acos}{\left(- \sqrt{2} \right)}\right)} + 2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(- \sqrt{2} \right)}\right)}$$
/ / ___\\
x2 = 2*pi - I*im\acos\\/ 2 //
$$x_{2} = 2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(\sqrt{2} \right)}\right)}$$
/ / ___\\ / / ___\\
x3 = I*im\acos\-\/ 2 // + re\acos\-\/ 2 //
$$x_{3} = \operatorname{re}{\left(\operatorname{acos}{\left(- \sqrt{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(- \sqrt{2} \right)}\right)}$$
/ / ___\\ / / ___\\
x4 = I*im\acos\\/ 2 // + re\acos\\/ 2 //
$$x_{4} = \operatorname{re}{\left(\operatorname{acos}{\left(\sqrt{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(\sqrt{2} \right)}\right)}$$
Сумма и произведение корней
[src] / / ___\\ / / ___\\ / / ___\\ / / ___\\ / / ___\\ / / ___\\ / / ___\\
0 + - re\acos\-\/ 2 // + 2*pi - I*im\acos\-\/ 2 // + 2*pi - I*im\acos\\/ 2 // + I*im\acos\-\/ 2 // + re\acos\-\/ 2 // + I*im\acos\\/ 2 // + re\acos\\/ 2 //
$$\left(\left(\operatorname{re}{\left(\operatorname{acos}{\left(- \sqrt{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(- \sqrt{2} \right)}\right)}\right) - \left(- 4 \pi + \operatorname{re}{\left(\operatorname{acos}{\left(- \sqrt{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(- \sqrt{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(\sqrt{2} \right)}\right)}\right)\right) + \left(\operatorname{re}{\left(\operatorname{acos}{\left(\sqrt{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(\sqrt{2} \right)}\right)}\right)$$
/ / ___\\
4*pi + re\acos\\/ 2 //
$$\operatorname{re}{\left(\operatorname{acos}{\left(\sqrt{2} \right)}\right)} + 4 \pi$$
/ / / ___\\ / / ___\\\ / / / ___\\\ / / / ___\\ / / ___\\\ / / / ___\\ / / ___\\\
1*\- re\acos\-\/ 2 // + 2*pi - I*im\acos\-\/ 2 ///*\2*pi - I*im\acos\\/ 2 ///*\I*im\acos\-\/ 2 // + re\acos\-\/ 2 ///*\I*im\acos\\/ 2 // + re\acos\\/ 2 ///
$$\left(2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(\sqrt{2} \right)}\right)}\right) 1 \left(- \operatorname{re}{\left(\operatorname{acos}{\left(- \sqrt{2} \right)}\right)} + 2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(- \sqrt{2} \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{acos}{\left(- \sqrt{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(- \sqrt{2} \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{acos}{\left(\sqrt{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(\sqrt{2} \right)}\right)}\right)$$
/ / / ___\\\ / / / ___\\ / / ___\\\ / / / ___\\ / / ___\\\ / / / ___\\ / / ___\\\
-\2*pi - I*im\acos\\/ 2 ///*\I*im\acos\\/ 2 // + re\acos\\/ 2 ///*\I*im\acos\-\/ 2 // + re\acos\-\/ 2 ///*\-2*pi + I*im\acos\-\/ 2 // + re\acos\-\/ 2 ///
$$- \left(2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(\sqrt{2} \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{acos}{\left(- \sqrt{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(- \sqrt{2} \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{acos}{\left(\sqrt{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(\sqrt{2} \right)}\right)}\right) \left(- 2 \pi + \operatorname{re}{\left(\operatorname{acos}{\left(- \sqrt{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(- \sqrt{2} \right)}\right)}\right)$$