/ / ____\\
| |\/ 10 ||
x1 = 2*pi - I*im|acos|------||
\ \ 2 //
$$x_{1} = 2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{\sqrt{10}}{2} \right)}\right)}$$
/ / ____\\ / / ____\\
| |\/ 10 || | |\/ 10 ||
x2 = I*im|acos|------|| + re|acos|------||
\ \ 2 // \ \ 2 //
$$x_{2} = \operatorname{re}{\left(\operatorname{acos}{\left(\frac{\sqrt{10}}{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{\sqrt{10}}{2} \right)}\right)}$$
Сумма и произведение корней
[src] / / ____\\ / / ____\\ / / ____\\
| |\/ 10 || | |\/ 10 || | |\/ 10 ||
0 + 2*pi - I*im|acos|------|| + I*im|acos|------|| + re|acos|------||
\ \ 2 // \ \ 2 // \ \ 2 //
$$\left(0 + \left(2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{\sqrt{10}}{2} \right)}\right)}\right)\right) + \left(\operatorname{re}{\left(\operatorname{acos}{\left(\frac{\sqrt{10}}{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{\sqrt{10}}{2} \right)}\right)}\right)$$
/ / ____\\
| |\/ 10 ||
2*pi + re|acos|------||
\ \ 2 //
$$\operatorname{re}{\left(\operatorname{acos}{\left(\frac{\sqrt{10}}{2} \right)}\right)} + 2 \pi$$
/ / / ____\\\ / / / ____\\ / / ____\\\
| | |\/ 10 ||| | | |\/ 10 || | |\/ 10 |||
1*|2*pi - I*im|acos|------|||*|I*im|acos|------|| + re|acos|------|||
\ \ \ 2 /// \ \ \ 2 // \ \ 2 ///
$$1 \cdot \left(2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{\sqrt{10}}{2} \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{acos}{\left(\frac{\sqrt{10}}{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{\sqrt{10}}{2} \right)}\right)}\right)$$
/ / / ____\\\ / / / ____\\ / / ____\\\
| | |\/ 10 ||| | | |\/ 10 || | |\/ 10 |||
|2*pi - I*im|acos|------|||*|I*im|acos|------|| + re|acos|------|||
\ \ \ 2 /// \ \ \ 2 // \ \ 2 ///
$$\left(2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{\sqrt{10}}{2} \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{acos}{\left(\frac{\sqrt{10}}{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{\sqrt{10}}{2} \right)}\right)}\right)$$