/ / ___\\
x1 = 2*pi - I*im\acos\\/ 2 //
$$x_{1} = 2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(\sqrt{2} \right)}\right)}$$
/ / ___\\ / / ___\\
x2 = I*im\acos\\/ 2 // + re\acos\\/ 2 //
$$x_{2} = \operatorname{re}{\left(\operatorname{acos}{\left(\sqrt{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(\sqrt{2} \right)}\right)}$$
Сумма и произведение корней
[src] / / ___\\ / / ___\\ / / ___\\
0 + 2*pi - I*im\acos\\/ 2 // + I*im\acos\\/ 2 // + re\acos\\/ 2 //
$$\left(0 + \left(2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(\sqrt{2} \right)}\right)}\right)\right) + \left(\operatorname{re}{\left(\operatorname{acos}{\left(\sqrt{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(\sqrt{2} \right)}\right)}\right)$$
/ / ___\\
2*pi + re\acos\\/ 2 //
$$\operatorname{re}{\left(\operatorname{acos}{\left(\sqrt{2} \right)}\right)} + 2 \pi$$
/ / / ___\\\ / / / ___\\ / / ___\\\
1*\2*pi - I*im\acos\\/ 2 ///*\I*im\acos\\/ 2 // + re\acos\\/ 2 ///
$$1 \cdot \left(2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(\sqrt{2} \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{acos}{\left(\sqrt{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(\sqrt{2} \right)}\right)}\right)$$
/ / / ___\\\ / / / ___\\ / / ___\\\
\2*pi - I*im\acos\\/ 2 ///*\I*im\acos\\/ 2 // + re\acos\\/ 2 ///
$$\left(2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(\sqrt{2} \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{acos}{\left(\sqrt{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(\sqrt{2} \right)}\right)}\right)$$