Решите уравнение cos x=1,2 (косинус от х равно 1,2) - Найдите корень уравнения подробно по-шагам. [Есть ответ!]

cos x=1,2 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: cos x=1,2

    Решение

    Вы ввели [src]
    cos(x) = 6/5
    $$\cos{\left(x \right)} = \frac{6}{5}$$
    Подробное решение
    Дано уравнение
    $$\cos{\left(x \right)} = \frac{6}{5}$$
    - это простейшее тригонометрическое ур-ние
    Т.к. правая часть ур-ния
    по модулю =
    True

    но cos
    не может быть больше 1 или меньше -1
    зн. решения у соотв. ур-ния не существует.
    График
    Быстрый ответ [src]
    x1 = 2*pi - I*im(acos(6/5))
    $$x_{1} = 2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{6}{5} \right)}\right)}$$
    x2 = I*im(acos(6/5)) + re(acos(6/5))
    $$x_{2} = \operatorname{re}{\left(\operatorname{acos}{\left(\frac{6}{5} \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(\frac{6}{5} \right)}\right)}$$
    Численный ответ [src]
    x1 = 6.28318530717959 - 0.622362503714779*i
    x2 = 0.622362503714779*i
    График
    cos x=1,2 (уравнение) /media/krcore-image-pods/hash/equation/b/37/2fe7617c33a1646fe543bc0a6aa7a.png